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ABSTRACT 

Over the last decade, many-core Graphics Processing Units (GPUs) have been widely 

used to accelerate a variety of applications. Meanwhile, Intel has released its Xeon Phi 

Coprocessor, which is equipped with more than fifty x86 cores, each supporting four 

hardware threads. Despite their widespread use, many-core processors are still considered 

relatively difficult to program, in that they require the programmer to be familiar with 

both parallel programming and the hardware features of these devices. 

Due to their massive computational powers, many-core processors have been 

successfully used to parallelize a wide variety of dense matrices and vectors based 

applications. These extensively investigated problems are mainly from linear algebra, 

stencil computations, image processing and so on. However, many established and 

emerging problems have not yet been fully explored. Some of these applications use 

irregular algorithms/operations (e.g., dynamic programming), while others are based on 

irregular data structures, such as graphs. It has been shown that these emerging 

applications do exhibit certain degree of static and runtime parallelism, but are relatively 

hard to parallelize. 

My research focuses on addressing important issues related to the deployment of 

emerging applications on many-core processors. In particular, we proposed efficient GPU 

implementations for large-scale pairwise sequence alignment and integrated proposed 

GPU kernels into a hybrid MPI-CUDA framework for CPU-GPU clusters. we also 

targeted graph- or tree-based applications and proposed: (1) unifying programming 

interfaces for many-core processors (2) runtime support for efficient execution on 
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irregular datasets and (3) compiler support for efficient mapping of applications onto 

hardware. Finally, we conducted a comprehensive study of performance, memory 

footprint and power consumption on various platforms and extended existing central 

processing units (CPU) only or graphic processing units (GPU) only CNNs learning 

methods to CPU-GPU cooperative ways. We also implemented a virtual memory and 

integrated into Caffe to facilitate training large CNN models with limited GPU memory. 

  

 



1 
 

Chapter 1 Introduction 

1.1 Introduction 

Over the last decade, many-core graphics processing units (GPUs) have been widely used 

to accelerate a variety of applications. Meanwhile, Intel has released its new Intel® Xeon 

PhiTM coprocessors, which are equipped with more than fifty x86 cores, each supporting 

four hardware threads. The peak double-precision performance of high-end many-core 

devices from Nvidia, AMD and Intel are well above 1 teraflops. Due to heterogeneity in 

both hardware features and application characteristics, it is often quite hard to choose the 

hardware platform that can guarantee good performance to a given application. In 

addition, performance optimization has increasingly become more hardware and 

application specific and an optimization designed for a hardware platform might not work 

at all on others.  

Besides the increased complexity on the hardware side, the many-core era has also 

lent to significant software challenges. Although many-core processors are commonly 

used, they are still relatively difficult to program since they require programmers to be 

familiar with both parallel programming and with the features and operation of these 

hardware platforms [1]. To achieve good performance, the programmers need to tune 

their code and sometimes even redesign their algorithms to better fit the underlying 

hardware. This is not at all an easy job. This complexity is aggravated by the variety of 

software stacks used by the various many-core platforms. For instance, Nvidia’s GPUs 

adopt both CUDA and OpenCL as their programming interface. However, in order to 

program the Intel Xeon Phi, one needs to master its customized OpenMP directives as 

well as other programming tools like Intel TBB and Cilk. This increasing variety of 
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programming models does not make the use of many-core processors any easier, not to 

mention that it also requires the programmer to become familiar with the debugging and 

profiling tools associated with each programming interface.  

Due to their massive computational powers, many-core processors have been 

successfully used to parallelize a wide variety of dense matrix- and vector-based 

applications. These extensively investigated problems come mainly from linear algebra, 

stencil computations, image processing, and other applications with regular 

computational and memory access patterns. However, many established and emerging 

problems have not yet been fully explored. Some of these applications use less regular 

algorithms/operations (e.g., dynamic programming), while others are based on irregular 

data structures, such as graphs. Examples can be drawn from different application 

domains such as bioinformatics, social networking, machine learning, electrical circuit 

modeling, discrete event simulation, compilers, and computational sciences. It has been 

shown that these emerging applications do exhibit a certain degree of static and runtime 

parallelism, but are relatively hard to parallelize. 

Among emerging applications, three categories of applications are eye-catching: 

bioinformatics, graph processing and deep neural network based applications.  

With the development of fast and cheap genome sequencing techniques, 

bioinformatics plays a more and more important role in biology. From sequence 

alignment to genome editing, from structural biology to personalized health, scientists are 

using modern technology to produce a huge amount of data and powerful machines to 

analyze these data. New algorithms to accelerate scientific discoveries are in continuous 

development. A popular example is the Needleman-Wunsch algorithm, which is a widely 
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used global sequence alignment tool with applications in the analytics of complex 

microbial communities and the inference of the tree of life, to name a couple of use cases. 

The goal of this algorithm is to find the alignment of two strings (generally protein or 

DNA) that maximizes a cost function. 

Graph applications are characterized by irregular and unpredictable memory access 

patterns, frequent control flow divergence, and a degree of parallelism that is known only 

at runtime (rather than at compile time). In fact, the amount of parallelism within graph 

and other irregular applications depends on the characteristics of the dataset, rather than 

solely on its size. Yet, many established and emerging applications are irregular in nature, 

being based on irregular data structures, such as graphs and trees. Graph and trees are 

powerful representations used in many practical applications. Examples of such 

applications include adaptive meshes, web search, networking, online marketing and 

social network analysis. With the increased popularity of social and web network analysis, 

there is an increasing demand for accelerating these applications. 

Neural network is nowadays an important machine learning method. The history of 

neural network research can be traced back to the second half of the last century and 

neural networks were successfully applied to recognize handwritten checks and ZIP 

codes in mail in the 90s. Before being used in classification, neural networks need to be 

trained. Although the high computational requirements of the training phase continue to 

be a key factor hindering the advancement of algorithms and applications based on neural 

networks, recent advancements in software and hardware have dramatically promoted 

their use in both academia and industry. Nowadays, neural network is a driving force for 

computer vision, natural language processing and speech recognition. Based on recent 
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breakthroughs in these fields, many exciting applications and technologies like 

autonomous driving are ready to change our world.  

As we can see, these emerging applications are rapidly evolving and computational 

power is the key to this revolution. Although hardware and software complexities in the 

many-core era create a number of challenges for us to address, they also bring many 

opportunities for us to explore. 

 

1.2 Contributions 

In this dissertation, we explore the design of effective software systems for many-core 

platforms and make the following contributions: 

• In the context of application-specific acceleration, we explore different GPU 

implementations of the Needleman-Wunsch bioinformatics algorithm. Many 

optimization methods discussed in this dissertation can be extended to algorithms 

that have similar computation and memory access patterns and are used in other 

domains (e.g., integral histogram used in computer vision and pattern 

recognition). 

• In the context of graph processing, we demonstrate that the design of easy-to-use 

programming models and effective compiler and runtime techniques can hide the 

hardware details from programmers and dramatically simplify the use of many-

core processors without sacrificing performance. We also explore a new hardware 

feature for GPUs – called dynamic parallelism – suitable for graph processing and 

other applications with irregular computation and memory access patterns. We 

propose a novel method to reduce runtime overhead and improve hardware 
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resource utilization when using this feature. The techniques and insights discussed 

in this dissertation are mostly transferable to many other irregular applications. 

• We conduct a comprehensive study on the power behavior and energy efficiency 

of neural networks on CPUs and GPUs. We propose novel hybrid CPU-GPU 

solutions to reduce memory footprint and improve resource utilization, as well as 

overall performance, of neural network computations. Our insights can facilitate 

the design of high performance and energy efficient software solutions for neural 

networks. 

 

1.3 Dissertation Organization 

The rest of this dissertation is organized as follows. Chapter 2 provides some background 

on the GPU architecture and the three types of applications covered in this dissertation. 

Chapter 3 describes different implementations of the Needleman-Wunsch algorithm on 

GPU. Chapter 4 describes our work on the deployment of graph and other irregular 

computations on many-core processors. Specifically, this chapter includes (1) unifying 

programming interfaces for many-core processors (Chapter 4.2), (2) runtime support for 

efficient execution of applications on irregular datasets (Chapter 4.3) and (3) compiler 

support for the efficient mapping of irregular applications onto parallel hardware 

(Chapter 4.4). Chapter 5 describes our workload characterization and improvement on 

training deep convolutional neural networks. Chapter 6 concludes our discussion. 
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Chapter 2 Background 

2.1 GPU Architecture and Programming Model 

Nvidia GPUs have evolved for four generations: the pre-Fermi, the Fermi, the Kepler and 

Maxwell. In pre-Fermi and Fermi architectures, the GPUs comprise a set of Streaming 

Multiprocessors (SMs) and GPUs with different compute capabilities are distinguished 

by the numbers of SMs. Each SM contains a set of simple in-order cores. These in-order 

cores execute instructions in a SIMD manner. Figure 1 shows the internal micro-

architecture of one SM in Fermi GPU. The “cores” are actually different SIMD lanes. 

Multiple lanes (8 or 16) shared one set of instruction fetch unit (e.g. scheduler and 

dispatcher). Usually, a SM has multiple instruction fetch units (2 or 4) and the number of 

cores varies from 16 to 48. Starting from Kepler, the cores in Streaming Multiprocessors 

have increased dramatically and are named after SMX. Figure 2 shows the comparisons 

between SM of Fermi architecture and SMX of Kepler architecture. The new Kepler 

architecture is design for high throughput as well as power efficiency. It slows down the 

clock speed of SMX but integrates much more CUDA cores (192 v.s. 32/48), which 

achieve 2x performance per watt. With more cores, both the bandwidth and capacity of 

the register file in each SMX are doubled. 
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Figure 1: Fermi GPU architecture and the SM 

GPUs have a heterogeneous memory organization consisting of high latency off-chip 

global memory, low latency read-only constant memory (which resides off-chip but is 

cached), low-latency on-chip read-write shared memory, and texture memory. GPUs 

adopting the Fermi and Kepler architecture, such as those used in this work, are also 

equipped with a two-level cache hierarchy. Judicious use of the memory hierarchy and of 

the available memory bandwidth is essential to achieve good performances. In particular, 

the utilization of the memory bandwidth can be optimized by performing regular access 

patterns to global memory. In this situation, distinct memory accesses are automatically 

coalesced into a single memory transaction, thus limiting the memory bandwidth used.  
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Figure 2: Kepler GPU architecture and SMX v.s. Fermi’s SM 

The GPU can support thousands of parallel threads and the overhead of context 

switch is pretty low. Thus, unlike CPU, which utilize large cache to achieve high 

performance, GPU rely on massive parallel thread and fast context switch to high the 

long memory access latency. This design makes GPU have higher density of ALU than 

CPU and become the rising star in high performance computing. 

However, programming massive parallel threads is hard, especially for GPUs. The 

advent of CUDA has greatly increased the programmability of GPUs. With CUDA, the 

programmers are required to write the kernel functions, which are executed on the GPUS 

and the computation is organized in a hierarchical fashion, wherein threads are grouped 
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into thread-blocks. The CUDA provides several built-in thread identifiers and block 

identifiers and assign them to different threads. Each thread-block is mapped onto a 

different SM(X), whereas different threads are mapped to simple cores and executed in 

SIMD units, called warps. The presence of control-flow divergence within warps can 

decrease the GPU utilization and badly affect the performance. Threads within the same 

block can communicate using shared memory, whereas threads within different thread-

blocks are fully independent. Therefore, CUDA exposes to the programmer two degrees 

of parallelism: fine-grained parallelism within a thread-block and coarse-grained 

parallelism across multiple thread-blocks. 

 

2.2 Needleman-Wunsch Algorithm 

The goal of the Needleman-Wunsch algorithm (NW) is to find the alignment of two 

strings (generally protein or DNA) that maximizes a cost function. That cost function 

consists of two parts. The first is a match and mismatch scoring matrix that gives the cost 

of aligning matching or mismatching sequence elements (hereafter S(xi,yj)). For DNA 

alignments, simple schemes such as rewarding matches (+4) and penalizing mismatches 

(-5) are often used.  For protein alignments, it is more common to use an empirical 

scoring matrix [e.g., BLOSUM; 2]. The second part of the function is a cost for “gaps”: 

i.e., regions of one sequence not aligned against regions of the other.  Here, we will apply 

a linear gap cost G. As input data, NW takes two sequences of length m and n. The 

optimal alignment is then computed within a 2-D matrix M of size (m+1)*(n+1). Note 

that this matrix can be virtual: there are linear space memory implementations of the 
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Figure 3: Calculation of matrix in NW 

algorithm (e.g. Hirschberg’s algorithm [3]). Each element in M is then computed 

according to equation (1). 

                                  

(1) 

Here, M(i,j) is the alignment score in the ith row and jth column of M. The first row 

and column of M are initialized as gaps of increasing length [4]: once this initialization is 

complete, the remaining positions can be computed given the values above them, to their 

left and to their left diagonal (Figure 1). 

It is apparent from this description that the memory and computing requirements of a 

naïve implementation of the algorithm can be significant, as they scale as O(mn) (often 

spoken of as O(n2)). For instance, in our experiments, we use database of roughly 25,000 

unique 16S rDNA genes from the Ribosomal Database Project [5]. Performing all 

possible pairwise alignments involves roughly 300 million comparisons. Moreover, the 

computation itself is somewhat memory intensive: as equation (1) indicates, computing 

each new element in the alignment matrix 

requires three reads from memory and one 

write to store the new value. On the other 

hand, the computation is relatively trivial, 

requiring three additions and a 

comparison.  

The NW algorithm can be broken into 

two phases: (1) the computation of the alignment matrix M (described above, Figure 3), 

and (2) the trace-back operation, which uses the alignment matrix to reconstruct the 

( 1, 1) ( , )
( , ) max ( 1, )

( , 1)

i jM i j S x y
M i j M i j G

M i j G

− − +⎧
⎪

= − +⎨
⎪ − +⎩
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sequence alignment itself. Unless linear-space implementations of NW [3] are adopted, 

the trace-back is a linear-time operation accounting for a small fraction of the overall 

execution time. In chapter 4, the GPU-works mainly focus on the computation of the 

alignment matrix. 

2.3 Irregular applications 

If the effective deployment of regular applications on many-core processors has been 

extensively investigated, the one of irregular applications is still far from understood. 

Irregular applications are characterized by irregular and unpredictable memory access 

patterns, frequent control flow divergence, and dynamic parallelism at runtime (rather 

than static parallelism at compile time). Different from regular applications, whose 

parallelism is determined solely by the size of dataset, the amount of parallelism within 

irregular applications depends on the characteristics of the dataset.  

Graphs, as a powerful representation used in many practical applications (e.g. 

networking, social networking, online marketing, webpage search, citation networks, 

among others), are intrinsically irregular. In the past decades, the size of real world 

datasets has rapidly increased, thus exposing higher amount of parallelism for many 

graph algorithms. It has been shown that graphs used in real-world applications exhibit 

significant topological differences. The topology of the graphs dictates the amount of 

parallelism that can be extracted at runtime, thus affecting the performance of specific 

GPU implementations. This heterogeneity makes it difficult to design a GPU 

implementation of a graph algorithm that is optimal on a large variety of datasets.  

From the point view of computational patterns, irregular loops and parallel recursion 

are two important categories of irregular applications. Irregular loops are characterized by 
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an uneven work distribution across loops iterations. For example, nested loops where the 

number of iterations of inner loops varies across the iterations of outer loops. The degree 

of parallelism within irregular loops is typically data dependent and known only at 

runtime. Parallel recursion is also considered as an important form of irregular 

applications because recursive calls may spawn different amount of parallel work. As a 

consequence of this uneven work distribution, simple parallelization code handling all the 

recursive calls in the same way may lead to hardware underutilization.  

 

2.4 Convolutional neural networks  

At a high level, convolutional neural networks simulate the way in which human brains 

process and recognize images. They belong to the family of multi-layer perceptrons 

(MLP) [6]. A MLP is a multi-layer neural network consisting of an input layer, an output 

layer and multiple hidden layers between the input and output layers. Each hidden layer 

represents a function between its inputs and outputs that is defined by the layer’s 

parameters.  

Convolutional neural networks mainly consist of three types of layers: convolutional 

layers (Conv), pooling layers (Pooling) and fully connected layers (FC). Each layer may 

contain thousands to millions of neurons. A single neuron takes some inputs, computes 

their weighted sum, and sends the output to the neurons in the next layer. In this way, 

distinct layers apply different operations to their inputs and produce outputs for the layers 

that follow. Figure 4 shows an example of convolutional neural network (LetNet [7]), 

which consists of alternated convolutional and pooling layers followed by a few fully-

connected layers. 
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Figure 4: Example of Deep Convolutional Neural Network (LeNet) 

Convolutional layers: These layers apply convolutions to the input with several 

filters and add a bias term to the results. Very often, a nonlinear function (called 

activation function) is also applied to the results. Convolutional layers exploit spatial 

connectivity and shared weights. The parameters of a convolutional layer are reduced 

dramatically compared to a typical hidden layer of a MLP. Convolutional layers are the 

most computational intensive layers in CNNs. 

Pooling layers: These layers perform a nonlinear down-sampling operation on the 

input. They partition the input into a set of sub-regions and output sampled results from 

these sub-regions. Based on their sampling method, pooling layers can be categorized 

into: maximum pooling, average pooling and stochastic pooling. Pooling layers 

progressively reduce the amount of parameters as well as control model over-fitting. 

Pooling layers are usually placed between two convolutional layers. 

Fully connected layers: Unlike in convolutional layers, neurons in FC layers have 

full connections to all output from the preceding layers. As a consequence, a FC layer has 

many more parameters than a convolutional layer. Nonetheless, since convolution 

operations are replaced by multiplications, fully connected layers require less 

computational power. 
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Using CNNs for machine learning tasks involves three steps: (1) designing the CNN 

architecture, (2) learning the parameters of the CNN (also called “training”), and (3) 

using the defined CNN for inference. Since CNNs are back-propagation learning 

algorithms, their learning phases can be divided into: forward propagation, backward 

propagation and weight update. In the forward propagation phase, input data are sent to 

the neural network to generate the outputs. In the backward propagation phase, the errors 

between the standard outputs and the produced outputs are propagated in a backward 

fashion to compute the errors in each layer. These errors (also called gradients) in each 

layer will be used in every weight update. However, for inference, the parameters of the 

networks are given and there is only forward propagation to produce the prediction.  
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Chapter 3 Bioinformatics Applications on CPU-GPU Clusters  

3.1 Motivation 

The pairwise sequence alignment algorithms, both local and global [4, 8], are in many 

ways the core technology for the study of biological sequences. They have key roles in 

multiple sequence alignment [9], phylogenetics[10], and molecular evolution studies [11].  

It adopts the dynamic programming approach to alignment which is O(n2) in time 

complexity. The biologists often wish to make millions or even billions of such 

comparisons [12], which are extremely time consuming. To reduce the computational 

complexity, some heuristic methods are proposed to improve the basic dynamic 

programming approach. Examples can be found in sequence database search programs 

such as FASTA [13] and BLAST [14, 15] and various forms of genome assembly 

algorithms [16, 17]. Such acceleration is useful in some cases.  However, these heuristics 

depend on the assumption that the vast majority of the sequence pairs being compared 

have essentially no similarity and that, once this fact has been demonstrated for a 

sequence pair, the computation of the alignment itself is unnecessary. 

Increasingly a second class of problem is becoming relevant. In this case, there is a 

requirement to compare very large numbers of sequences that are all evolutionarily 

related.  As a result, it is not possible to omit the computation of any of the alignments, 

making approaches such as that of BLAST inappropriate.  One example is the 

computation of very large multiple sequence alignments for analyses such as inference of 

the “tree of life” [18-20]. A similar problem motivates my work in this thesis, namely the 

analysis of complex microbial communities through the sequencing of a particular 

microbial gene, the 16S rDNA gene. Biologists have discovered that many microbes 
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cannot be cultured under laboratory conditions but that it is possible to assess their 

presence through the direct sequencing of the DNA in an environment [21-25]. To 

compare microbial communities across environments, it is helpful to survey a single gene: 

the 16S gene is useful in this regard as it is essentially ubiquitous across prokaryotic life. 

However, the sequencing of the gene is only a first step: it is then necessary to compare 

the sequences generated to each other and to other known 16S sequences to assess the 

taxonomic diversity present in the sample. As there are hundreds of thousands of 16S 

sequences in sequence databases and tens of thousands of unique sequences among those 

[5], this analysis can be daunting. 

The problem as stated is clearly highly parallel. To address this problem, the 

massively parallel computing potential of GPUs is brought in. General-purpose graphics 

processing units (GPGPUs) are advancements of hardware originally developed to 

accelerate complex graphical rendering for applications like 3D gaming. However, the 

state-of-the-art GPUs can be programmed for various general applications. The 

programming interfaces include the CUDA framework proposed by Nvidia and OpenCL, 

which is an open standard for parallel programming heterogeneous system. As GPGPUs 

are increasingly becoming part of HPC clusters, how to levering GPUs in a distributed 

clusters for large-scale sequence alignment becomes an emerging research problem. 

 

3.2 Related Work 

3.2.1 Early Works on Sequence Alignments 

To study the biological sequences, pairwise sequence alignment algorithms are heavily 

used in various applications (e.g. sequence database search). These algorithms can be 
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categorized into (1) local sequence alignment (e.g. Smith-Waterman algorithm [8]) and 

(2) global sequence alignment (e.g. Needleman-Wunsch [4]). SW is used when the 

optimal common subsequence between two sequences is needed to identify. NW, on the 

contrary, is the algorithm to align two sequences. 

Both SW and NW are based on dynamic programming. The algorithms start with an 

initialized matrix and the calculation is performed from left-top to right-bottom. Due to 

the computation intensive nature of this approach, some heuristic solutions are proposed 

to address similar problem, at the cost of reducing accuracy. FASTA [13] and BLAST 

[14, 15] are two famous methods among those heuristic solutions. 

 

3.2.2 Acceleration of Bioinformatics Application on GPUs 

In recent years GPUs and other accelerator devices have been widely used to accelerate a 

variety of scientific applications from many domains [26-28]. In particular, a number of 

biological applications, including BLAST [29], hidden Markov models [30-32] and 

structure comparisons [33], have been ported to GPU or FPGA architectures. Among 

GPU-enabled HPC Bioinformatics software, CUDA-BLASTP [34] is designed to 

accelerate NCBI BLASTP for protein sequence databases search. MSA-CUDA [35] is a 

parallel multiple sequence alignment program accelerating all three stages of ClustalW [9] 

processing pipeline. In next-generation sequencing technologies, there are already 

different proposes [36-38] using GPUs to accelerate various applications. Most relevant 

to my work in this thesis are several sequence alignment algorithms implemented on 

GPU [27, 39-41]. In chapter 3, we will provide more background on one of these: the 

NW implementation in the Rodinia benchmark suite [27]. 
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3.2.3 Sequence Alignments on GPUs 

Among the alignment implementations, Liu et al., [42] present an optimized sequence 

database search tool based on the Smith-Waterman (SW) local alignment algorithm (in 

contrast to the NW global alignment problem considered here). Compared to other 

implementations [39, 43, 44], their tool provides better performance guarantees for 

protein database searches. Li et al., [45] offer a GPU acceleration of SW intended for a 

single comparison of two very long sequences; we focus on accelerating many pairwise 

alignments of shorter sequences. We are interested in the NW problem, which rather than 

being used for database search is more commonly applied to situations where all possible 

pairwise alignments are required (e.g., alignments for phylogenetics or metagenomics as 

described above). In their first phase (computation of the alignment matrix), NW and SW 

share similar computation patterns, so optimization techniques can be reused between the 

two methods.  

There are also distributed CPU-based implementations of NW: for example 

ClustalW-MPI [46] aligns multiple protein, RNA or DNA sequences in parallel using 

MPI. Biegert et al., [47] have introduced a more general MPI bioinformatics toolkit in the 

form of an interactive web service that supports searches, multiple alignments and 

structure prediction. Our tool differs from these in combining MPI and CUDA to allow 

deployment on CPU-GPU clusters where multiple GPUs may be employed 

simultaneously. 
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3.3.4 Rodinia-NW: Needleman-Wunsch on GPU 

The Rodinia benchmark suite [27] offers a GPU parallelization of NW (hereafter, 

Rodinia-NW), that is used as baseline in this thesis. Rodinia-NW operates as follows. 

Since each element in the alignment matrix depends on its left-, upper- and left-upper-

neighbors, a way to exploit parallelism is by processing the matrix in minor diagonal 

manner. Each minor diagonal depends on the previous one, thus leading to the need for 

iterating over minor diagonals. However, at every iteration, all the (independent) 

elements in the same minor diagonal line can be calculated simultaneously. If the matrix 

is laid out in global memory in row-major order, the involved memory access patterns are 

uncoalesced, potentially leading to performance degradation. Since each element in the 

alignment matrix is used for calculating three other elements, performance can be 

improved by leveraging shared memory and dividing the alignment matrix in square tiles 

(each of them fitting the shared memory capacity). Rodinia-NW performs tiling and 

exploits two levels of parallelism: (i) within each tile elements are processed in minor 

diagonal manner, and (ii) different tiles in the same minor diagonal line can also be 

processed concurrently by distinct thread-blocks. Threads within the same thread-block 

manipulate the data and store elements in shared memory temporarily. After the 

computation of a tile completes, all of the data are moved to global memory using 

coalesced accesses. For square alignment matrices and tiles of width N and T, 

respectively, Rodinia-NW’s parallel kernel is invoked   times (once for each minor 

diagonal of tiles). After carefully analyzing Rodinia-NW, we found the following 

limitations. 
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First, Rodinia-NW is designed for a single pairwise comparison. Applications such as 

those above require hundreds to thousands of comparisons. As such, they introduce a 

second exploitable level of parallelism, especially as each pairwise comparison is 

independent. Moreover, the sequences generally differ in length but Rodinia-NW only 

supports sequences of equal length, requiring padding to handle more general cases. 

Second, Rodinia-NW requires three data transfers for each alignment, an approach 

that can be improved. Before kernel launch, the alignment matrix is initialized (with the 

gap information) on the CPU. Next, alignment matrix and score matrix are copied from 

CPU to GPU. The alignment matrix is processed on the GPU, and finally copied back to 

the CPU. We note that the two copies of the alignment matrix are O(nm) each. However, 

the first data transfer of the alignment matrix can be avoided by initializing its 1st row 

and 1st column directly on the GPU.  

Finally, CUDA does not support global barrier synchronization among thread-blocks 

within a parallel kernel (an implicit global synchronization takes place at the end of each 

kernel execution). Since in Rodinia-NW each tile is mapped to a thread-block and tiles 

must be processed in diagonal strip manner, a global synchronization among thread-

blocks operating on the same diagonal is required before proceeding to the next diagonal. 

This is accomplished by invoking multiple kernel launches from the host side. This 

approach has two limitations: (i) each kernel launch has an associated overhead (that 

depends on the GPU device), and (ii) the GPU is underutilized by kernel launches that 

process small numbers of tiles (i.e., those corresponding to the first and the last 

diagonals). 
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3.3 Design of GPU-workers 

In this Section we describe three alternative implementations of multiple pairwise 

alignments using NW on GPUs: TiledDScan-mNP, DScan-mNP and RScan-mNP [48-

50]. All these implementations, exemplified in Figure 4, Figure 5 and Figure 6, aim to 

overcome the limitations pointed out above.  

 

3.3.1 TiledDScan-mNW: Multiple alignments with tiling 

The first method (TiledDScan-mNW) is a directed extension of Rodinia-NW to multiple 

pairwise alignments. This approach still uses tiling and operates in diagonal strip manner, 

performing multiple kernel invocations to compute the alignment matrices. However, for 

each kernel invocation, multiple alignment matrices are concurrently processed using 

different thread-blocks (and SMs). This is illustrated in Figure 5, where we concurrently 

perform three pairwise comparisons: (seq1, seq2), (seq1, seq3) and (seq1, seq4). In the first 

iteration, the top-left tiles of the three matrices are processed in parallel by three thread-

blocks, and thus mapped onto three streaming multiprocessors: SM1, SM2 and SM3. In 

the second iteration, the tiles of the second minor diagonal of the three matrices are 

processed in parallel by six thread-blocks, and thus mapped onto streaming 

multiprocessors SM1-SM6. Note that, for m pairwise comparisons, the number of kernel 

invocations of TiledDScan-mNW is reduced by a factor m (as compared to Rodinia-NW); 

for each kernel call, the number of thread-blocks is increased by a factor m. This has two 

advantages: (i) a limited kernel invocation overhead, and (ii) an improved GPU 

utilization. Execution configurations with a large number of threads allow not only 

exploiting all the SMs and cores available on the GPU, but also hiding the global memory 
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Figure 5: TiledDScan-mNW and the mapping to GPU cores and SMs 

access latencies (and NW is a memory-intensive application). Being an extension of 

Rodinia-NW, TiledDScan-mNW retains its advantages: regular computational patterns 

and coalesced memory access patterns when storing alignment data from shared memory 

to global memory.  

 

3.3.2 DScan-mNW: Single-kernel diagonal scan 

TiledDScan-mNW still requires multiple kernel invocations to perform m pairwise 

alignments. Even if the parallelism within each kernel call is improved by a factor m 

compared with Rodinia-NW, some kernel invocations still exhibit limited parallelism 

(and limited opportunity to hide memory latencies). Our second implementation – 

DScan-mNW – performs a diagonal scan with a single kernel call. As illustrated in 

Figure 6, in this case each alignment matrix is assigned to a thread-block (and mapped 



23 
 

 
Figure 6: DScan-mNW and the mapping to GPU cores and SMs 

onto a SM). No tiling is performed. The computation iterates over diagonals. For each 

diagonal, every element is processed by a thread (and mapped onto a core).  

To limit the number of expensive accesses to global memory, the computation is fully 

performed in shared memory. The alignment matrix is stored in row-major order in 

global memory and in minor diagonal order in shared memory. According to equation (1), 

at each iteration three diagonal lines are required: the first two diagonal lines cache 

previous data and the third one contains the newly computed elements. Once computed, 

this third line can be copied from shared to global memory. At that point, the first 

diagonal line can be discarded and the shared memory reused for the next iteration. To 

summarize, the matrices are created in shared memory and moved to global memory 

diagonally. The main disadvantage of this approach is the uncoalesced memory accesses 

required to store diagonal data to global memory. We found that the latencies of such 

irregular access patterns can be effectively hidden by using large numbers of threads. 

The computational pattern of our DScan-mNW is similar to the SW intra-task 

parallelization proposed by Liu et al. [42]. However, [42] avoids uncoalesced memory 
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Figure 7: RScan-mNW and of the mapping to GPU cores and SMs 

  

accesses by storing  the alignment matrix in global memory in minor diagonal order. We 

found that, when using large thread-blocks to hide memory latencies (e.g., 512 

threads/block), the overhead due to uncoalesced memory access patterns is reduced to 10% 

and 7% of the execution time on Fermi and Kepler GPUs, respectively (the exact 

percentage depends also on the clock-rate of the memory system). On the other hand, 

storing the alignment matrix in row-major facilitates the trace-back operation (which is 

not considered in [42]) in two ways: first, it avoids the need for complex index translation; 

second, the more regular data layout leads to better caching properties. 

 

3.3.3 RScan-mNW: Row scan via single CUDA core 

Our third method – RScan-mNW – uses a fine-grained matrix-to-core mapping and a 

row-scan approach. First, each alignment matrix is computed by a single GPU core. 

Second, to allow regular compute and memory access patterns, each alignment matrix is 

computed row-wise (rather than diagonal-wise). This computational pattern is illustrated 
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in Figure 7. 

This method leverages shared memory in order to allow data reuse and minimize the 

global memory transactions. The parallel kernel iterates over the rows of the alignment 

matrices. At every iteration, only two rows per matrix must reside in shared memory: the 

previously computed one and the one containing newly computed elements. Only the 

left-most element of the new row must be loaded from global memory; for the rest, the 

computation happens solely in shared memory. Once the new row has been computed, it 

is copied from shared to global memory. The previously computed row can be discarded, 

and the new one can be cached for use in the next iteration. The kernel has two phases: 

computation and communication. In the computation phase, the threads within a thread-

block operate fully independently: each thread computes the data corresponding to the 

row of an alignment matrix and stores them in shared memory. In the communication 

phase, threads belonging to the same thread-block cooperate to transfer row data from 

shared to global memory in a coalesced fashion (that is, each alignment matrix is 

transferred cooperatively by multiple threads). In case of very long sequences, rows are 

split into sections so as to fit into shared memory. The size of these sections is 

configurable. Large sections require more shared memory, which in turn limits the 

number of active threads on each SM. Small sections (e.g. sections with less than 32 

elements) lead to warp underutilization in the communication phase, which in turn can 

hurt the performance. The usage of shared memory is a major concern in the kernel 

configuration process. The per-block shared memory can be calculated using the 

following formula: 

shmem = 3*sizeof(int)*BLOCK_SIZE*SECTION_SIZE 



26 
 

Each thread stores three sets of data: the sequence data and two sections of the 

alignment matrix. Each thread-block performs BLOCK_SIZE pairwise alignments using 

sections of size SECTION_SIZE. By setting the BLOCK_SIZE and the SECTION_SIZE to 

32, we use 12KB of shared memory with no warp underutilization. With this setting, each 

SM can concurrently run up to four thread-blocks. 

The advantages of this approach are twofold. First, the computational pattern is 

extremely regular: unlike diagonals, rows are all of the same size. Second, data transfers 

between shared and global memory are naturally coalesced. The main drawback to this 

approach is that the parallelism is limited by the GPU memory capacity.  For example, if 

the sequences to be compared are of length 2,000 and the alignment matrices contain 4-

byte integers, then each matrix will be of size 32MB. To fully utilize the cores of typical 

GPUs (say 480 cores), we should allow 480 parallel pairwise comparisons, requiring a 

total of roughly 15GB of memory. This number considerably exceeds the 1-5GB of 

memory present on most GPUs. Therefore, on long sequences RScan-mNW will tend to 

underutilize the GPU resources. On the other hand, this approach is very promising for 

short sequences (e.g. <500). For long sequences, an alternative optimization would be to 

break the alignment matrices into smaller strips to reduce the memory footprint, and use 

dual-buffering to move previously computed strips to the CPU while computing new 

ones. Finally, we note that certain scoring schemes allow for linear memory NW 

algorithms of minimal complexity: under these limited and less-commonly used schemes, 

highly efficient parallelism could be achieved using RScan-mNW. 

The computational pattern of our RScan-mNW is similar to the SW inter-task 

parallelization proposed by Liu et al. [42]. However, their proposal does not use shared 
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memory in the kernel and adopts a different data layout in global memory. Specifically, 

to avoid uncoalesced global memory accesses, Liu et al. place data corresponding to 

different alignment matrices into continuous global memory space. For instance, the ith 

element of global memory is from the ith alignment matrix, while the (i+1)th element is 

from the (i+1)th alignment matrix. This memory layout leads to poor data locality during 

the trace-back phase. As mentioned above, trace-back is not considered in [42], but is a 

necessary operation in the problem we consider. 
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3.4 Experimental Evaluation 

In this section, we present two sets of experiments: (i) single GPU experiments, and (ii) 

cluster experiments. The former are meant to evaluate our GPU implementations of 

multiple sequence alignment with NW and the latter are to evaluate our distributed 

framework. Particularly for the cluster the experiments, we focus on the scalability issues. 

 

3.4.1 Experimental setup 

Hardware setup – Single GPU experiments have been performed on a variety of low-

end and high-end GPUs, listed in Table 1.  

Software setup – The CUDA 5.0 driver and runtime are installed in all the machines 

used. The OS in use is CentOS5.5/6 with g++4.1.2. Each data point represents the 

average across 3 executions.  

Dataset – Our reference dataset consists of about 25,000 unique 16S rDNA genes 

from the Ribosomal Database [5]. The sequences are on average 1,536 bases long. 

 

3.4.2 Performance on single GPU 

Our first set of experiments is meant to evaluate our GPU implementations and compare 

them with Rodinia-NW. In Chapter 3.3.2, we noted two limitations in Rodinia-NW: 

unnecessary memory transfers from CPU to GPU and inefficiencies in the computational 

kernel and its invocations. Below, we will show how we improve performance with 

respect to both limitations.   
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 Memory Transfers: As explained in Chapter 3.3.2, Rodinia-NW initializes the 

alignment matrix on CPU and copies it to GPU. Also, to simplify memory access during 

computation, it creates a temporary substitution score table of size m x n during CPU 

initialization. For problems of the size considered, data transfer consumes considerable 

amount of time. An obvious optimization is to move the initialization from CPU to GPU. 

In addition, by omitting the creation of the temporary substitution table, more alignment 

matrices can be accommodated on the GPU, thus allowing for increased parallelism. In 

Figure 8 we show the effect of these optimizations on different GPUs. In all experiments, 

64 pairwise alignments are performed. The optimized version initializes the alignment 

matrices on GPU and avoids the initial CPU-to-GPU data transfer. On top of this, the 

optimized + pinned memory version uses pinned memory. As can be seen, the proposed 

memory optimizations lead to a 5-10% and a 20-25% decrease in execution time on low-

end and high-end GPUs, respectively. In addition, the combination of the memory 

Table 1: Characteristics of the GPUs used in our evaluation 

GPU Type Values 

Low-end GPUs 

Quadro 2000 
4 SM x 48 cores 

~1 GB Global memory 

GTX 460 
7 SM x 48 cores 

~1 GB Global memory 

GTX 480 
15 SM x 32 cores 

~1.5 GB Global memory 

High-end GPUs 

Tesla C2050 
14 SM x 32 cores 

~2.6 GB Global memory 

Tesla C2070/C2075 
14 SM x 32 cores 

~5 GB Global memory 

Tesla K20 
13 SM x 192 cores 

~4.7 GB Global memory 
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Figure 8: Evaluation of memory optimizations on Rodinia-NW 

optimization with the use of pinned memory leads to a decrease in execution time in 

excess of 30% and 50% on low-end and high-end GPUs, respectively. 

Kernel computation: We now focus on the performance of our compute kernels. Our 

analysis has two goals: (i) evaluating the performance improvements over Rodinia-NW, 

and (ii) devising criteria for selecting the optimal GPU implementation depending on the 

underlying GPU device. In Figure 9 and 10, we show the relative speedup in kernel 

computation time of DScan-mNW and TiledDScan-mNW over Rodinia-NW (the 

speedup is computed as the ratio between the compute time of Rodinia-NW and that of 

our GPU implementations). We performed experiments on all available GPUs and varied 

the number of pairwise comparisons performed from 8 to 64. Given its fine-grained 

alignment-to-core mapping, on these datasets RScan-mNW underutilizes the GPUs and 

reports poor performance. This, in general, holds when comparing long sequences on 

GPUs with 1-5GB device memory. Therefore, we focus on the other schemes.  
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Figure 9: TiledDScan-mNW Kernel speedup over Rodinia-NW 

Figure 9 reports the speedup of TiledDScan-mNW over Rodinia-NW. Note that 

TiledDScan-mNW performs fewer kernel calls (and therefore, has less kernel overhead) 

and involves more per-kernel computation (thus leading to increased parallelism). This 

motivates the performance improvement achieved by TiledDScan-mNW over Rodinia-

NW. Note that the speedup increases with the computational power of the GPU (from 

1.2x on the Quadro2000 to 2x on the K20). In fact, the increased parallelism in the 

TiledDScan-mNW kernel can be better serviced by GPUs with more SMs and compute 

cores. 

As can be seen in Figure 10, DScan-mNW also outperforms Rodinia-NW on all 

devices and datasets. Its performance is also generally better than that of TiledDScan-

mNW, except on Tesla C207x cards. It is somewhat surprising that our approach does not 

show substantial speedup over Rodinia-NW on this device. It must be said that NW is an 

integer application, and Tesla GPUs are optimized for larger memory capacity (5GB vs. 
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Figure 10: DScan-mNW Kernel speedup over Rodinia-NW 

1GB) and improved support for double precision floating point operations, but have a 

reduced clock rate (1.15GHz vs. 1.4GHz in GTX 480 cards, for example).  We believe 

that the high number of uncoalesced memory accesses performed by DScan-mNW may 

motivate the poor performances on Tesla C207x cards, which have a slower memory 

clock. 

Figure 11 reports the speedup of RScan-mNW over Rodinia-NW on sequences of 

different lengths. The number of pairwise comparisons performed in each experiment is 

reported on top of each bar (all experiments have been configured so to use 70% of the 

global memory capacity). As mentioned in Chapter 3.3.3, in RScan-mNW each core 

computes an alignment matrix: in order to fully utilize the computational resources of the 

GPU, RScan-mNW needs to perform a large number of parallel sequence alignments. 

This leads to pressure on the global memory capacity: for long sequences, the GPU 

global memory becomes the bottleneck, and the performance of RScan-mNW is 

penalized. RScan-mNW’s performance improves when the length of the sequence 
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Figure 11: Kernel speedup of RScan-mNW on sequences of various lengths 

decreases: in the case of shorter sequences, the global memory can accommodate more 

alignment matrices, thus leading to higher utilization of the GPU cores. In particular, on 

512-base sequences, RScan-mNW gives a speedup over Rodinia-NW up to a factor 5x.  

In general, Figure 9, 10 and 11 show that DScan-mNW and TiledDScan-mNW are 

preferable to RScan-mNW on the 1,536-base sequences in the 16S rDNA gene dataset. In 

addition, these results show that our methods overcome inefficiencies of Rodinia-NW, 

and suggest that DScan-mNW is preferable on all devices except Tesla C207x. On such 

cards, TiledDScan-mNW provides better performance. This finding will be used to 

configure our GPU-workers. As next step, we want to determine how to size the amount 

of work that each GPU-worker should pull from the GPU-dispatcher to operate at full 

capacity. In fact, we want to fully utilize the GPUs present in the system. The number of 

pairwise comparisons that can be performed concurrently on each GPU is limited by its 

memory capacity. We configured each GPU to operate with its global memory 75% full. 
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Figure 12: Speedup of  DScan-mNW over an 8-threaded CPU implementation 

For the sequence lengths being considered, this leads to 79, 79, 119, 208, 417, and 372 

parallel alignments on Quadro2000, GTX460, GTX480, Tesla C2050, Tesla C207x and 

K20 GPU, respectively. 

 Figure 12 shows the speedup reported by Dscan-mNW over an 8-threaded OpenMP 

implementation running on the 8-core CPU on Node-4 (see Table 2). The numbers on 

each bar represent the throughput in number of pairwise alignments/sec. For each GPU, 

we performed three experiments: one using unpinned memory, one using pinned memory, 

and one using double buffering. We first define an “optimal batch size” bSIZE for a 

particular GPU to be the number of simultaneous alignments that can be performed given 

the device memory (as above). For the first two versions, we ran analyses consisting of a 

number of sequences equal to 3 bSIZE in order to effectively time the computation.  For 

double buffering, only half of the GPU memory performs alignments at one time, so 6 

batches of size bSIZE/2 were timed. The performance was measured as the number of 

sequence pairs compared per second.  
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As can be observed from Figure 12, switching to pinned memory offers a gain of 

roughly 1.6x, consistent with previous findings [51]. Not using the OS’s virtual memory 

system could in principle limit the number of sequences that can be processed 

concurrently. However, our observation is that problem sizes are instead generally 

limited by the amount of physical memory on the GPU, so we do not consider this CPU-

based memory limitation to be a significant disadvantage. The application of double-

buffering along with pinned memory offers an additional average 1.2x speedup, with the 

exception of the GTX480 system, which does not show significant speedup. We 

speculate that the reason for this lack of improvement is that the GTX480 has a more 

restricted handling of CUDA streams, which does not allow the same level of 

overlapping of memory transfers and kernel computations possible on other devices. In 

general, it can be observed that even cheap low-end GPUs (like the GTX460 and 

GTX480) offer throughput in the order of 200-250 pairwise alignment/sec. 

 

3.5 Other Applications with Similar Computation Pattern 

In many computer vision tasks ranging from image search to multi-target tracking, 

feature probability maps represented as histograms play a critical role in the overall 

computation. The integral histogram for images is an efficient preprocessing method for 

speeding up diverse computer vision algorithms. Similarly to the Needleman-Wunsch 

algorithm, the integral histogram computation follows a dynamic programming pattern. 

We have explored different techniques to efficiently compute integral histograms on 

GPU and propose two GPU implementations: CW-TiledHV and WF-Tiled. 
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(a) Tiled horizontal scan                                (b) Tiled vertical scan 

Figure 13: Tiled horizontal-vertical scan (CW-TiledHV) 

Cross-wave Tiled Horizontal-Vertical Scan (CW-TiledHV): As represented in 

Figure 13, the CW-TiledHV approach operates as follows. First, each of the b matrices of 

size (h x w) corresponding to the different bins is divided into tiles. Each tile must be 

small enough to fit in shared memory and large enough to contain sufficient amount of 

data for computation work. In our implementation, we use squared tiles. The processing 

is divided into two stages: the horizontal scan (Figure 13(a)) and the vertical scan (Figure 

13(b)). In each stage, the computation is performed on strips with the width of the tile. A 

kernel call operates on a strip; the computation is performed strip by strip until the whole 

matrix has been processed. The total number of image tiles or blocks processed is given 

by: 

Tiles = (WImage/WTile) x (HImage/WTile) 

In horizontal scan, the number of vertical strips is equal to: 

VStrips = WImage/WTile 

and during the vertical scan the number of horizontal strips is equal to: 
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Figure 14: Data flow of CW-TiledHV implementation 

HStrips = HImage/WTile 

We expect the image sizes to be evenly divisible by the tile sizes other wise the image 

is appropriately padded. In the kernel implementation, each tile is assigned to a thread-

block, and each row/column is assigned to a thread. Shared memory is used to allow 

efficient and coalesced memory accesses. Threads belonging to the same block push the 

wave-front forward (either from left to right or from up to bottom in Figure 13). Since 

each thread-block consists of warps, in order to avoid thread divergence within warps and 

GPU underutilization, the tile size must bet set to be a multiple of the warp size (32). 

Wave-front Tiled Scan (WF-Tiled): The use of separate horizontal and vertical scan 

kernels in the CW-TiledHV method has a drawback: it causes each tile to be transferred 

multiple times between global and shared memory. In fact, in both scan kernels, each tile 

is first moved from global into shared memory, then processed, and then moved back to 

global memory. This fact is exemplified in Figure 14. As a consequence, combining the 

horizontal and vertical scans into a single kernel will allow accessing global memory 

only twice per tile (once in read, and once in write mode). Actually, for the horizontal 

scan, the data in each row rely on the data on their left; for the vertical scan, the data in 

each column rely on the data on their upper position. This data access pattern is quite 
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Figure 15: WF-Tiled implementation 

similar to the Needleman-Wunsch algorithm in this chapter. Therefore, we can arrange 

the computation in a similar fashion, and compute the integral histogram using a front-

wave scan. This approach, that we call Wave-front Tiled Scan (WF-Tiled), is shown in 

Figure 15. Similarly to the CW-TiledHV implementation, we divide the h x w matrix into 

different tiles. Again, each tile should be small enough to fit in shared memory, and large 

enough to contain non-trivial amount of computation work. All the tiles lying on the 

same diagonal line are considered part of the same trip and processed in parallel. Within 

the parallel kernel, each thread block will process a tile, and each thread will process a 

row (during horizontal scan) and a column (during the vertical scan) of the current tile. 

The tricky part of this implementation is the following: after the horizontal scan, the last 

column of each tile (that would otherwise be overwritten during the vertical scan) must 

be preserved. In fact, the last column must be used in the horizontal scan of the next strip. 

This can be easily achieved by storing the extra data in global memory (the additional 
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memory requirement correspond to a single array of h elements). By eliminating 

unnecessary data movements between shared and global memory, the WF-Tiled method 

can potentially be preferable to the CW-TiledHV. 
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Chapter 4 Irregular Applications on Many-Core Processors 

Parallelization of regular of regular applications (such as those operating on dense 

matrices and vectors) on many-core processors has been extensively investigated. 

However, parallelization of irregular applications continues to be challenge. Irregular 

applications are characterized by irregular and unpredictable memory access patterns, 

frequent control flow divergence, and a degree of parallelism that is known only at 

runtime (rather than at compile time). In fact, the amount of parallelism within irregular 

applications depends on the characteristics of the dataset, rather than solely on its size. 

Yet, many established and emerging applications are irregular in nature, being based on 

irregular data structures, such as graphs and trees. 

This chapter focuses on addressing important issues related to the deployment of 

irregular computations on many-core processors. Specifically, my contributions are in 

three directions: 

(1) Unifying programming interfaces for many-core processors. We proposed a 

compilation and runtime framework that generates efficient parallel implementations of 

generic graph applications for multi-core CPUs, Nvidia GPUs and Intel Xeon Phi 

coprocessors. Applications are implemented with a unified, platform-agnostic 

programming API and then our source-to-source compiler performs platform-specific 

code transformations and optimizations. 

(2) Runtime support for efficient execution of applications on irregular datasets. 

We analyzed the computational patterns of several irregular applications and found that 

the dynamic nature of the extracted parallelism makes it impossible to find an optimal 
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solution at compile time. So we proposed a runtime system able to dynamically transition 

between different implementations with minimal overhead, and investigated heuristic 

decisions applicable across algorithms and datasets.  

(3) Compiler support for efficient mapping of applications onto hardware. We 

proposed different parallelization templates for efficient code generation across various 

irregular applications and GPU architectures. In addition, we proposed a compiler-

assisted workload consolidation method to enhance the efficiency of kernels with 

dynamic parallelism on GPUs. 

 

4.1 Related Work 

Irregular applications are characterized by irregular and unpredictable memory access 

patterns, frequent control flow divergence, and a degree of parallelism that is known only 

at runtime (rather than at compile time). In fact, the amount of parallelism within 

irregular applications depends on the characteristics of the dataset, rather than solely on 

its size. Yet, many established and emerging applications are irregular in nature, being 

based on irregular data structures, such as graphs and trees. 

There has been a rich body of work on the design of parallel algorithms to solve 

various graph problems (e.g., breadth-first-search [52-54], shortest paths [55, 56], 

minimum spanning trees [52, 57, 58], connected components [59-63]) on many-core 

platforms. Recent works (i.e. Parallel BGL [64], ParGraph [65], STAPL [66] and 

GraphLab [67]) have proposed parallel graph libraries for multi-core processors and 

distributed systems. For single node system, GraphChi [68] efficiently computes large 

graphs on a single CPU node. Green-Marl [69] offers a domain-specific language for 
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graph analytics [70-72]. The Galois system [73, 74] includes a programming model and a 

runtime component to dynamically extract parallelism from irregular applications by 

leveraging speculative parallelization.  

 As GPUs have become more general-purpose, the interest of research community has 

moved toward effectively deploying irregular applications on these many-core platforms. 

In particular, there have been several efforts [75-81] focusing on the acceleration of graph 

processing algorithms on Nvidia GPUs. Harish and Narayanan [75] were the first to 

perform this operation; their proposed implementations, however, are pretty basic and 

ineffective on sparse graphs used in practice. Better results have been reported through 

subsequent efforts, which focused on specific algorithms (breadth-first search [76, 77, 80], 

inclusion-based points-to analysis [78], strongly connected components [79, 82]). The 

optimizations introduced by these proposals are somehow orthogonal to our work, and 

can be integrated with it. Because of their higher generality, the proposals closest to ours 

are those by Hong et al [80, 81]. Hong et al. [80] proposes a virtual warp-centric 

programming model to allow datasets with different characteristics to more efficiently 

use the GPU hardware. This idea can be integrated with our work. Hong et al. [81] 

considers an adaptive solution that alternates CPU and GPU execution. We, on the other 

hand, focus on the automatic selection of different GPU solutions and on the conditions 

that make this beneficial. 

Mapgraph [83], VertexAPI2 [84] and Gunrock [85] are GPU-targeting tools for graph 

analytics, not compiler frameworks to generate multiple GPU code variants for generic 

graph. They provide library implementations of specific graph algorithms and APIs to 

customize graph analytics. Users still require hand-coding in CUDA/OpenCL and 
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implementing predefined callback functions (gather, scatter). TOTEM [86] and Medusa 

[87] are more general programming frameworks for graph algorithms operating on static 

datasets (i.e., they do not include support for dynamic memory operations). Our work 

aims to automatically generate different code variants for GPU and Intel Phi devices 

starting from a platform-agnostic interface and to also support dynamic datasets. Unlike 

TOTEM, we do not consider graph partitioning across devices and cooperating CPU-

GPU execution. Medusa also explores different graph storages (e.g., edge-oriented 

storage), graph-aware buffer schemes and multi-GPU execution. These mechanisms, 

however, can be incorporated in our framework. 

Recent studies have analyzed the strengths and limitations of Nvidia’s dynamic 

parallelism (DP). Although the effectiveness of dynamic parallelism has been 

demonstrated on certain applications (such as clustering algorithms [88], computation of 

the Mandelbrot set [89] and a particle physics simulation [90]), it has been shown that, 

because of the non-negligible overhead of this feature, the naïve use of DP can actually 

slow down the performance [91-93]. Wang et al. [93]  have performed a characterization 

of DP-based implementations of unstructured applications, focusing on the analysis of 

their control flow behavior, their memory access patterns and the DP overhead. Yang and 

Zhou [91] have proposed a compiler framework to support nested thread-level 

parallelism without using DP. Their solution, which leads to spawning a massive number 

of threads, does not apply to recursive computations and is less effective on applications 

that exhibit high degrees of thread-level parallelism even before the proposed code 

transformations.  
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In our work, we propose code parallelization templates – with and without DP – to 

facilitate the efficient execution of irregular nested loops on GPUs. Besides that, we also 

propose generic code transformation techniques that apply equally to irregular loops and 

recursive applications to facilitate efficient use of dynamic parallelism, and we have 

automated these code transformations through compiler integration. Wang et al. [94]  

have proposed hardware architecture to support lightweight block execution of 

dynamically launched kernels. Conversely, our method is purely software-based, and is 

thus applicable on any GPU that supports dynamic parallelism, requiring no modification 

to the architecture. 

 

4.2 Unified Programming Interface 

Although many-core processors are widely used, they are relatively difficult to program, 

since they require programmers to be familiar both with parallel programming and with 

the features and the operation of these hardware platforms. This complexity is aggravated 

by the variety of software stacks used by the various many-core platforms. 

In this work [95, 96], we intend to fill this gap and propose a compilation and runtime 

framework (Figure 16) for the effective deployment of generic graph applications on 

many-core processors (GPUs and the Intel Xeon Phi). Note that our framework also 

produces multi-threaded code for multi-core CPUs. Quite unlike previous work [86, 87], 

we consider graph applications that use static or dynamic datasets, and we free the 

programmer from the need to write specific parallel kernels for GPUs and the Intel Xeon 

Phi. Our framework hides the complexity and heterogeneity of the underlying hardware 

and software stack from the programmer. The programming API exposed to the user is 
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Figure 16: Proposed graph processing system 

platform-agnostic, and includes a set of platform-independent sequential and parallel 

constructs. Our source-to-source compiler converts the graph and the containers (sets, 

multi-sets and queues) into internal, platform-specific data structures for multi-core CPUs, 

Intel Xeon Phi and NVIDIA GPUs. It then uses iterator-based templates to parallelize 

graph processing. The compiler generates different functionally-equivalent code variants 

for the target platforms. These variants differ in the parallelization strategy and in the 

optimized data structures on which they rely. Our runtime system, designed to support 

automatic selection of code variants and parameter tuning (based on profiling), also 

includes support for efficient dynamic memory management. 

Unlike previous work [75-80, 97-100], we do not aim to optimize a specific algorithm 

on a particular many-core processor, but to automate the development of high-

performance graph applications on many-core platforms. By leveraging our platform-

agnostic programming API, the application developer delegates the complex task of 

tailoring the application to a particular platform to our tool-chain. 
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4.2.1 General Design & Methodology 

Graph algorithms can be represented as a sequence of iterative steps. At each step, the 

algorithm performs some work on the elements of a working set and updates the working 

set (typically, by visiting neighbors of an element) by adding or removing elements. In 

every iteration, the elements of the working set may be processed in parallel (although 

synchronization mechanisms may be required to control concurrent data accesses). This 

computational pattern maps naturally to the bulk synchronous [101] style of parallelism.  

Figure 16 describes our proposed graph processing system. The programming 

interface consists of a high-level graph API and a set of platform-agnostic, sequential and 

parallel constructs allowing the user to define generic graph applications. The source-to-

source compiler generates different code variants for multi-core CPUs, Intel Phi 

coprocessors and NVIDIA GPUs. These code variants may differ in several aspects: from 

the type of parallelization performed, to the implementation of the underlying data 

structures [102], to the handling of nested parallelism, and more. The generated code is 

written in OpenMP and CUDA, and it uses the offload execution model on the Intel Phi. 

During code generation, the graph and the containers (sets, multi-sets and queues) are 

converted into internal, platform-specific data structures. In addition, existing parallel 

basic blocks are used for common primitives such as reduction, sort and scan. 

Parallelization is enabled by the presence of parallel iterators, which must be explicitly 

inserted in the code by the programmer. The compiler automatically handles 

synchronizations associated with the graph, the iterators and the containers. 

Synchronizations associated with custom data structures must be explicitly indicated by 



47 
 

the programmer using high-level, platform-independent synchronization primitives, 

which are converted into platform-specific synchronization mechanisms. Finally, the 

runtime system supports two important functions: (i) selecting the most suitable code 

variant depending on the characteristics of the application, the dataset and the underlying 

platform, and (ii) supporting dynamic memory allocation. In this paper, we focus on the 

second function and propose a runtime library for dynamic memory management. In 

addition, in Chapter 4.2.4 we provide guidelines to efficiently match the application to 

the hardware platform. 

 

4.2.2 Programming API 

We aim to provide the programmer with a familiar and easy-to-use programming 

interface, similar to existing ones designed for CPUs. To this end, we extend Green-

Marl’s API [69] with dynamic memory allocation and runtime primitives to support 

applications that use dynamic data sets (Green-Marl assumes static data sets),  and we 

borrow some containers (ordered and unordered sets) from the Galois’s system [73].  

The resulting programming interface is summarized in Figure 17.  

Graph API: The graph API includes the abstract data structure and high-level 

primitives that can be used by the programmer to define and manipulate graphs. Graphs, 

nodes and edges have default attributes, which are part of the API. For example, each 

graph consists of a set of nodes and edges, can be directed, and may have a root node. 

Each node has a set of neighbors and of (outgoing and incoming) edges, and a level. Each 

edge has a left and right vertex and potentially a weight. These basics data structures can 

be extended via user-defined, application-specific attributes. Such attributes can be 
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Figure 17: Graph programming API 

defined using the addAttr primitive, and their value can be set and queried using the 

setAttr and getAttr methods, respectively. 

Container data structures: A variety of containers (unordered and ordered sets and 

multisets, and queues) can be used to build graph algorithms (for example, to represent 



49 
 

the working set). These containers come with a set of access and manipulation primitives 

(add, remove, empty, etc.) and can apply to generic objects. Internally, containers operate 

on numeric data types and pointers to objects and are mapped to platform-specific, 

thread-safe data structures. 

Iterators: Iterators provide the ability to define loops. They can be of two kinds: 

sequential (for and while) and parallel (foreach and inBFS). Parallel iterators allow the 

programmer to expose parallelism within the application. The inBFS iterator (from 

Green-Marl [69]) modifies the level attribute of the nodes. 

Dynamic memory management primitives: Dynamic memory allocation primitives 

can be graph-specific (e.g., newGraph, add/deleteNode, add/deleteEdge) or general- 

purpose (e.g., new and delete). The former map to the internal, optimized graph 

representation; the latter can be used for containers or application-specific, user-defined 

data structures. All these primitives are internally mapped to a custom_malloc function 

and handled within our runtime system.  

Parallel primitives: Commonly used parallel primitives on containers (reduction, 

scan and sort) are internally mapped to platform-specific, optimized, thread-safe 

implementations. 

Synchronization primitives: The source-to-source compiler automatically handles 

synchronization related to the graph data structure, containers and iterators. However, 

application-specific, user-defined data structures may also require synchronized access. 

This kind of synchronization must be explicitly indicated by the programmer through 

high-level primitives (barrier and critical). These primitives are internally mapped to 

platform-specific synchronization mechanisms. 
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Runtime primitives: Runtime primitives can be invoked when the graph data 

structure is modified by external intervention. Specifically, commit is used to commit a 

set of graph modifications to the runtime system; after a commit, the required 

modifications are applied to the internal graph and possibly incorporated in the working 

set. The rebalance primitive allows re-optimizing the internal layout of the graph data 

structure. 

 

4.2.3 Case Study 

We consider two kinds of applications: graph analytics and general purpose graph 

processing. Specifically, we target three categories of workloads. 

Graph analytics on static datasets: These read-only algorithms perform analysis tasks 

on graphs that do not change over time or that change so infrequently to justify rerunning 

the algorithm on the whole graph when this happens. 

Graph analytics on dynamic datasets: These read-only algorithms perform analyses 

on graphs that may change over time. The graph itself is not modified by the algorithm, 

but by external events. For instance, in social network, graphs constantly change due to 

“friend” and “unfriend” acticities. 

General purpose graph processing: These read-write algorithms perform various 

types of general-purpose computations that may modify the structure of the underlying 

graph. For example, subset construction [103], which transforms a non-deterministic 

finite automaton (NFA) into a deterministic one (DFA), is a general purpose read-write 

algorithm. 
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Figure 18: A-DFA compression algorithm 

We briefly describe two algorithms used as example workloads and illustrate our 

programming API on them.  

A-DFA: A-DFA [104] is a compression algorithm used to reduce the memory 

footprint of DFA accepting large sets of regular expressions. For simplicity, in this paper 

we focus on the computation of the application-specific default transition attribute. Thus, 

the A-DFA algorithm shown in Figure 18 is read-only and operates on a static graph. 

Specifically, the algorithm visits a DFA graph in BFS manner (line 2). It compares each 

node with every other node at lower depth (skipping d levels) and selects the node with 

more transition commonality as default target state. Compared to BFS, A-DFA presents a 

non-trivial computation phase. In fact, the work executed at every step of the BFS 

traversal (lines 3-11) includes control-flow operations and scattered memory accesses to 

the whole DFA graph. We also notice that this algorithm exhibits a two-level parallelism 

(inBFS at line 2 and foreach at line 5). 
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Figure 19: PageRank algorithm 

PageRank: PageRank (Figure 19) is commonly used in search engines to rank 

webpages based on their significance. The rank attributes are initialized to a default value 

upon creation. In each iteration of the main loop (line 2), the ranks are updated according 

to the outdegree of connected nodes. Specifically, every node distributes its rank evenly 

to its outgoing neighbors (lines 5-6). PageRank terminates after all ranks converge (i.e., 

their variation falls below a given threshold delta). PageRank is a read-only algorithm 

that can operate on either static or dynamic graphs since webpages can be created and 

modified by user intervention. The user notifies the runtime system by issuing a sequence 

of addNode and addEdge (and corresponding delete operations) followed by a commit. 

The commit causes the involved nodes to be added to the working set ws. External 

modifications to ws are processed in the next iteration. The dynamic_update primitive in 

the iterator at line 2 indicates that external updates should be incorporated in ws at the 

beginning of each iteration. This can happen while PageRank is running or when it is 

terminated (in which case it will be reactivated). We note that the ranks are usually 

double precision floating point numbers, thus requiring the use of floating point 

arithmetic (on GPUs, floating point is slower than integer arithmetic). 
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Figure 20: DFA (subset) construction algorithm 

DFA construction: DFA are typically used by applications performing regular 

expression matching. In this context, regular expressions are initially compiled into a 

NFA. Then, the NFA is transformed into DFA through subset construction [103] (Figure 

20). Like A-DFA, DFA construction proceeds in BFS manner and exhibits a two-level 

parallelism (inBFS at line 5 and foreach at line 7). Again, the work performed in each 

iteration (body of inBFS loop at lines 6-20) contains control-flow operations and irregular 

memory accesses. However, DFA construction involves an additional complexity: it 

modifies the DFA graph (in fact, it creates it). As can be seen, DFA construction involves 

dynamic memory operations on the DFA graph (lines 2, 4, 14 and 18), on sets (lines 4, 8 

and 17) and on the custom subset data structure (lines 3, 4 and 14). The latter has a 

complexity hidden within its lookup and update primitives. Briefly, subset is a double 

linked-list data structure used to verify in linear time if a subset belongs to a power set. 
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The programmer can make the code parallelizable by using a critical section (lines 13-

15): this is an example of coarse-grained synchronization. In alternative, the programmer 

can provide a thread-safe implementation of the subset data structure optimized for 

different platforms (thus allowing custom fine-grained synchronization). 

 

4.2.4 Compiler Design 

Once graph algorithms are expressed by using our platform-agnostic API, our source-to-

source compiler generates different code variants for GPU, Intel Phi, and multi-core CPU. 

We describe the main aspects of the compilation process. 

A. Data Structure Design 

Our reference graph encoding scheme is the compressed sparse row form (CSR), a 

format commonly used to represent sparse data structures [75]. To support dynamic 

graphs, we extend the basic CSR data structure into a hierarchical-CSR (Figure 20). 

Initially, we overprovision both the level-1 nodes and edges arrays. In the edges array, we 

pre-allocate a default number of edges per node (blank slots in the level-1 edges array in 

Figure 20). The optimal initial provisioning size depends on the characteristics of the 

graph. Reserving larger space can improve the insertion performance at the cost of 

wasting memory. At each deletion, we invalidate elements. Upon insertion, we first use 

the free elements of the nodes and edges arrays. When the level-1 nodes array overflows, 

we allocate a level-2 nodes array. Similarly, when the portion of the edges array allocated 

to a node n overflows, we allocate a block of cells in a level-2 edges array and insert the 

new edges of n in it. We repeat this operation recursively: if the level-2 edges/nodes array 

overflows, a level-3 array is allocated. For each node, one extra variable is needed to 
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Figure 21: Hierarchical-CSR with level-2, level-3 nodes/edges arrays 

store the “pointer” to the corresponding block within the level-2 edge array (s, t, p, q in 

Figure 21). In addition, the last element of each level-x block (the dashed area in Figure 

21) stores a “pointer” to the level-(x+1) block (null-pointer if such block has not been 

allocated). Also, for fast insertion into any level-x block, the first element (solid black 

area in Figure 21) records the used space in the block. We fix the size of the level-2 

blocks (on GPU, for example, 128B blocks allow aligned memory accesses to entire 

blocks), and increase the block-size quadratically from level to level (to take into account 

the fact that commonly used small-world networks present only a few nodes with a 

substantial number of neighbors). The resulting hierarchical-CSR allows efficient 

dynamic insertions and deletions but, due to its nested structure, is less efficient to 

traverse than a flat. Our runtime system periodically calls the rebalance primitive to 

transform the hierarchical-CSR into pure CSR form. The allocation process relies on the 

dynamic memory management mechanism provided by our runtime (Section VI.A), 
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which fosters data locality. For container data structures, we use basic blocks proposed 

and discussed in previous work [75, 77, 97]. 

B. Code Generation 

We now describe our code generation process along with the platform-specific 

transformations we perform. 

General Design – Users encode functions corresponding to the “hot spots” in their 

applications using our programming API. Our source-to-source compiler then transforms 

these user-defined functions into C++ wrapper functions containing platform-specific 

code. In the case of multi-core CPUs, code regions associated with parallel iterators are 

translated into parallel regions through the insertion of OpenMP directives. GPUs and 

Intel Phi coprocessors require handling also the data transfers between host and device. In 

particular, the compiler generates data transfers for graphs and user-defined data 

structures declared outside the parallel regions and referenced inside them. In the case of 

the Intel Phi, parallel regions are handled using OpenMP directives and placed inside 

offload regions surrounded by the “#pragma offload” directive. The primitives to allocate 

variables on the coprocessor and move data between host and device are inserted along 

with the offload directives. In the case of GPUs, regions of code associated to parallel 

iterators are translated into parallel kernels. In this process, elements of the working set 

are mapped onto threads or thread-blocks (i.e., thread- and block-based mapping [102]) 

producing different code variants. The compiler then generates code for data transfers 

(using the cudaMalloc and cudaMemcpy primitives) and kernel launches. 

Handling of Nested Parallel Iterators – The presence of nested parallel iterators 

enables different code variants and can be handled differently on various accelerators. 
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The Intel Phi has a flat hardware parallelism. However, the two-level nesting of A-

DFA and DFA construction leads to different alternatives on the placement of the offload 

and OpenMP parallel directives. Specifically, we can: (i) place a synchronous offload at 

the level of the sequential for and the parallel directive at the level of the outer inBFS 

iterator; (ii) place both the synchronous offload and the parallel directive at the level of 

the outer inBFS iterator; (iii) use an asynchronous offload and a parallel directive on one 

of the parallel iterators (thus launching several parallel offloads concurrently). We 

experimentally found that the offload overhead makes the first code variant preferable. 

NVIDIA GPUs present a two-level hardware parallelism. Therefore, two-level nested 

iterators (as in 18 and 20) can be naturally handled by using block- and thread-based 

mapping for the outer and inner parallel iterators, respectively. On the other hand, using 

thread-based mapping on the outer-loop will cause serialization of the inner-loop. In the 

presence of three nested parallel iterators, an additional level of parallelism can be 

achieved by using multiple streams and the parallel kernel execution feature available 

starting from the Fermi architecture [105]. Given its massive hardware parallelism and its 

Hyper-Q technology, code variants using concurrent streams are particularly suited to 

Kepler GPUs. Kepler GPUs also allow an additional level of nesting through dynamic 

parallelism. However, we experimentally found that the overhead for launching nested 

kernels is significant, making it difficult to achieve good performance by using this 

feature. 

Other Accelerator-specific Optimizations – To reduce the communication overhead, 

we leverage the compiler analysis techniques proposed by [106] to identify data reused 

by subsequent parallel kernels with no intermediate CPU read or write access. These data 
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can be stored persistently on the coprocessor, thus avoiding unnecessary data transfers 

between host and device. On the Intel Phi, we use the alloc_if and free_if clauses to 

control the allocation of data and the in, out, and nocopy modifiers to avoid unnecessary 

data transfers. 

On the Intel Phi, the use of vectorization can greatly help performance. Vectorizable 

code can come from either foreach or for iterators. In the PageRank algorithm (Figure 

19), for example, the for loop at line 6 is a good candidate for vectorization. In the case of 

for loops, however, data dependences must be resolved (since these iterators are 

sequential). To this end, we rely on a feature of the Intel compiler: inserting a “#pragma 

ivdep” before a loop allows the Intel compiler to resolve conservatively assumed data 

dependences and possibly generate vectorized code. 

 

4.2.5 Runtime Library Design 

The runtime system has essentially two functions (Figure 16): dynamically selecting and 

tuning the code variant that better fits the characteristics of the target dataset and the 

hardware profile, and handling dynamic memory allocation. Variant selection can be 

done based on profiling information and by monitoring the size of the working set, and 

dynamically selecting the code variant that better fits that level of parallelism [102]. Due 

to space constraint, in this paper we only describe dynamic memory management 

A. Dynamic Memory Management 

NVIDIA GPUs lack of operating system support and of an efficient mechanism to handle 

dynamic memory allocation within parallel kernels. Starting from the Fermi Architecture 

NVIDIA has added support for the malloc call. However, the use of malloc on GPU has 
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two limitations: first, it leads to inefficient code for small size allocation; and second, it 

fails in the presence of large numbers of malloc. We observed that, when using system 

malloc, DFA construction fails even on small graphs (about 30k nodes). To circumvent 

this problem, we have introduced a custom memory management scheme for GPU. We 

have ported this mechanism to multicore CPU and Intel Phi, and have compared our 

proposed scheme with the direct use of the system malloc. 

General design: Our basic idea is to use a memory pool with fixed-size blocks. 

Specifically, we start by pre-allocating a single block with a handle pointing to the next 

free position within the block. Each custom_malloc call will obtain the requested number 

of bytes from the block, and will cause the handle to be incremented accordingly. When 

the current block fills up, a new block is allocated by the runtime. 

Our proposed solution uses multiple locks (one per thread-group) to reduce lock 

contention. We use two types of blocks (with separate handles): permanent and 

temporary blocks. Permanent blocks have the application lifetime, whereas temporary 

ones have the lifetime of an iteration of the algorithm. Variable de-allocations within the 

temporary blocks are deferred until the end of the corresponding iteration, when 

temporary blocks are cleared by resetting their handle. Compile-time code analysis 

determines which kind of custom_malloc to perform for each dynamically allocated 

variable and the runtime moves temporary data to permanent blocks when needed. This 

significantly reduces fragmentation and de-allocation cost, which distinguishes our 

dynamic memory management from other proposals. 

Intel Phi/CPU implementation: Since the Intel Phi and the CPU have a flat thread 

organization, thread grouping is done based on the thread identifiers. Our experimental 



60 
 

results show that on CPU the system malloc and custom_malloc have similar 

performance. On the Intel Phi, however, the system malloc outperforms the 

custom_malloc (independent of the number of regions). We experimentally verified (by 

forcing locks also on system malloc calls) that this inefficiency is not due to the 

synchronization overhead. We believe that pre-allocating a large memory buffer on the 

Intel Phi may affect the performance in two ways. First, the Intel Phi operating system 

performs lazy memory allocation (i.e., it progressively allocates memory as needed).  

This mechanism may make large allocations costly. Second, large pre-allocations may 

have bad interference with caching. 

GPU implementation: The GPU implementation of the above memory management 

mechanism requires addressing two issues: using a deadlock-free locking mechanism and 

reducing the synchronization cost. Ramamurthy [105] pointed out that, due to the SIMT 

architecture and the unfairness of GPU warp schedulers, common spin-lock 

implementations based on atomic compare_and_swap may cause deadlock. To avoid this 

problem, we use the deadlock-free implementation described in [105]. To reduce the 

synchronization cost on GPU, we associate a buffer region to each thread-block, thus 

limiting contention to threads belonging to the same block. This design also allows 

storing handles in shared memory for fast access. However, atomics on shared memory 

generally result in serialization and are costly [107]. We experimental verified that 

storing these handles in global memory leads to better performances. Finally, we note 

that the blocks are stored in global memory, and can therefore be accessed by all threads. 

In summary, each thread-block can allocate data only in its assigned regions, but can 

access data located in regions mapped to other thread-blocks. 
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4.2.6 Performance Evaluation 

In this section we evaluate the performance of the code generated by GRapid on three 

platforms: an 8-core Xeon E5-2609 CPU, an NVIDIA Tesla C2075 GPU, and an Intel 

Xeon Phi 5110P. This process will provide guidelines on the mapping of applications 

onto these platforms. We compiled CPU and Phi code through the Intel C++ compiler 

(icpc 13.1.2) and used the CUDA 5 toolkit to compile and run the GPU code. Data 

transfer times are included in the coprocessor results. In all cases, we show the speedup 

reported by the parallel code over a serial code running on a Xeon E5 processor. 

To cover all the categories of graph applications, we implemented BFS, A-DFA, 

PageRank and DFA Construction using GRapid. For BFS and PageRank, we used 

datasets from DIMACS competitions and Stanford-Large-Data Collection (see [102] for 

more detail). The largest graph has 4M nodes and 34.5M edges. For A-DFA and DFA 

construction, we use DFA graphs with 30k-700k nodes and 70M-180M edges (typical 

sizes in regex matching paper [104]). Due to limited space, we omit a detailed discussion 

of the results reported on BFS. 

A. A-DFA 

Figure 22 and 23 report the performance of A-DFA. The datasets are DFAs with number 

of states varying from 30k to 400k, as reported on the x-axes. We recall that A-DFA 

makes the default transition of each DFA state n point backward to the state that has the 

highest number of transitions in common with n. The distance parameter d affects the 

amount of work (lines 3-10 of Figure 18): for larger d, the algorithm performs more state 

comparisons (and memory accesses). In the GPU case, we use three of the code variants 
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Figure 22: A-DFA compression –Speedup of GPU over serial CPU implementation 

and also show the performance reported by BFS. In the Intel Phi case, we use a bitmap-

based working set and a variable number of threads. 

We note the following observations. First, due to the irregularity of the work 

performed, the speedup of A-DFA on GPU is substantially inferior to that of BFS using 

the same code variants. Second, the GPU speedup of A-DFA decreases when the amount 

of work increases (that is, for larger d and datasets). Third, the relative performance of 

the code variants differs between BFS and A-DFA. Fourth, due to the more general-

purpose nature of its hardware, the behavior of the Intel Phi differs from the GPU. In fact, 

the speedup of A-DFA on the Intel Phi is far greater than that of BFS and increases with 

the amount of work (that is, with increasing d) from 9~15x to 43~67x. On the other hand, 

the speedup does not scale with the dataset size. In fact, larger graphs put more pressure 

on the cache, thereby limiting the performance. In addition, in contrast to BFS, A-DFA 

can effectively leverage all 60 cores available on the Intel device: the performance scales 

almost linearly until 120 threads (e.g., two threads per core). However, using all four 
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Figure 23: A-DFA compression – Speedup of Xeon Phi over serial CPU 
implementation. 

hardware threads in each core does not provide further benefits. Finally, due to the 

complexity of the work, the multi-threaded CPU implementation of A-DFA achieves 

ideal speedup: roughly 8x on 8 cores. 

B. PageRank 

Figure 24 shows the speedup (and, for values < 0, the slowdown) of PageRank on 

dynamic datasets when using our hierarchical-CSR over performing a full CSR rebuild. 

We evaluate different methods for initial overprovisioning of the level-1 arrays: zero (0) 

provision (reserve no extra space), even provision (reserve the same amount of extra 

space to all nodes) and ratio provision (reserve different amounts of extra space to 

different nodes according to their outdegree). The experiments are conducted on the 

Google weblink graph [102], which consists of 0.7M nodes and 2.5M edges. In case of 

even overprovisioning, we set the extra allocation to half of the average node outdegree. 

In case of proportional overprovisioning, we overprovision the edge array so that each 
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Figure 24: PageRank on dynamic graphs with hierarchical CSR 

node is allocated 150% of the space required by its outdegree. We dynamically add an 

increasing number of nodes and edges (evenly distributed among nodes) to the original 

graph (x-axis). While doing so, we keep the average outdegree unchanged: the number of 

added edges is roughly 7 times that of added nodes. In the hierarchical-CSR 

implementation, the PageRank kernel is slightly more complex because it must handle 

the hierarchical graph data structure. However, the static approach requires a full rebuild 

of the CSR representation and, consequently, large data transfers between the CPU and 

the coprocessor. As can be seen, since the amount of added nodes is small (< 3.5% 

compared to whole graph), the incremental, hierarchical approach is preferable to a full 

rebuild on both CPU and GPU for most of the cases. On CPU, even overprovisioning 

achieves the best speedup. On GPU, however, the performance of the 0 provision and 

even provision methods are very close. Ratio provision introduces blank slots in the 
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Figure 25: DFA construction – Speedup of multi-core CPU, GPU and Intel Phi over 
serial CPU code 

level-1 arrays, leading to underutilization of the GPU hardware. By using more extra-

space, ratio provision leads to the worst performance on GPU. We don’t show the 

performance of the Intel Phi, because it is poor (always 10%~20% slow down). We 

believe that the memory allocation mechanisms within the Intel Phi’s OS may interfere 

with our dynamic memory management scheme and cause this performance loss. We 

need to get more insights on the operation of the Intel Phi OS to improve the performance 

of our memory management scheme.  

C. DFA Construction 

Figure 25 shows the speedup of DFA construction on multi-core CPU, GPU and Intel Phi 

over a serial CPU implementation. We tested two code variants: one using coarse-grained 

and the other using fine-grained synchronization. We recall that the coarse-grained code 

variant has a critical section around the subset.update primitive, while the fine-grained 

version includes a thread-safe subset implementation that associates a fine-grained lock 
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Figure 26: DFA construction using different allocators and GPUs 

to each node of the double linked-list. On GPU, we use block-based mapping. In the 

kernel configuration, we set the number of blocks to twice the number of SM on the GPU 

and the block size to 128 threads. For the Intel Phi, we show the thread configuration 

reporting the best performance (the corresponding number of threads is indicated on top 

of the bars). We test DFA construction on four datasets with increasing size (x-axis). The 

multi-core CPU and the Intel Phi report the best and worst performance, respectively. 

Interestingly, the two code variants show comparable performance on all platforms 

(recall that the coarse-grained version uses the high-level critical primitive and requires 

minimal programming effort). The GPU and Intel Phi are consistently slower than the 8-

threaded CPU code; the performance gap between the multi-core CPU and the many-core 

devices, however, decreases as the dataset size (and the runtime parallelism) increases. 

The GPU performance suffers from the irregular memory access patterns, cost of locking 

and branch divergence. The modest performance of the Intel Phi is in part due to the less 

efficient memory management module within the thin-OS running on this coprocessor. 
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We compare our memory allocator with Halloc [108], a state-of-the-art dynamic 

memory allocator for NVIDIA Kepler GPUs. For completeness, we also port Halloc to 

Fermi GPUs. To this end, we remove the “__shfl” instructions from its code. This 

instruction allows distributing the register values from one thread to the other threads 

within the same warp, but is available only on Kepler GPUs. On Fermi GPUs, we use 

shared memory to exchange the value of register variables among the threads within a 

warp. This workaround, however, requires additional synchronization instructions, 

leading to performance degradation compared to the original version relying on the 

“__shfl” instruction. Figure 26 shows the performance comparison between our allocator 

and Halloc for DFA construction on Fermi (C2075) and Kepler (K20) GPUs. As can be 

seen, on Fermi GPUs our allocator leads roughly to a 3x speedup over Halloc. In addition, 

our allocator achieves a 21%, 25% and 28% performance improvement over Halloc on 

the 60k, 280k and 700k node DFA, respectively. This performance improvement can be 

explained as follows. Recall that our allocator uses two distinct memory pools – a 

permanent and a temporary one – and leverages compile-time analysis to determine 

where to perform allocations. This design decreases the deallocation cost and increases 

the data locality of temporary data. 

D. Summary 

Table 2 summarizes the characteristics of the four applications (BFS, A-DFA, PageRank, 

DFA Construction) and the speedup reported on multi- and many-core platforms. In the 

2nd column we indicate whether the graph topology is static or dynamic, and, in the latter 

case, whether it is modified by the application (read-write applications) or by external 

intervention (read-only applications). The 3rd column shows the application-specific 
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attributes. The 4th column reports an indication of the complexity of the parallel work and 

its arithmetic intensity. As can be seen, many-core platforms outperform multi-core 

CPUs on static datasets. The Intel Phi is preferable to GPU for more complex 

computational patterns, whereas the arithmetic intensity is not a big discriminating factor. 

The three platforms report similar speedups on DFA construction; however, the multi-

core CPU is in this case a slightly better choice, due to the presence of frequent dynamic 

memory allocation and synchronization. We note that manually generating code for the 

three considered devices would be a daunting and time consuming task: by automatically 

generating different versions of the code, GRapid allows the programmer to quickly 

identify the platform most suited to his application. 

 

4.3 Adaptive Computing 

It has been shown that graphs used in real-world applications [109-111] exhibit 

significant topological differences. The topology of the graphs dictates the amount of 

parallelism that can be extracted at runtime, thus affecting the performance of specific 

GPU implementations. This heterogeneity makes it difficult to design a GPU 

implementation of a graph algorithm that is optimal on a large variety of datasets. In this 

Table 2: Summary of applications and speedup over serial code 

Application 
Application & 
Graph Type 

Attributes 
Comp. pattern & arith. 

intensity 
Best Speedup 

m-CPU GPU Phi 
BFS read-only static Level (int) Set level (simple& low) 2.5x 50x 3.5x 

PageRank read-only 
static/dynamic 

Rank 
(double) 

Calculate Rank 
(intermediate & 

intermediate) 
6.3x 6.5x 9x 

A-DFA read-only static 
Default 

Trans (int) 
Compare trans. 
(complex, low) 

8x 6x 45x 

DFA 
construction 

read-write 
dynamic 

Trans Table 
(int) 

Compare Subset 
(complex, low) 

6.5x 5.5x 4.3x 
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work, we argue for an adaptive solution that takes into account the topological 

characteristics of the dataset to dynamically select the most suitable alternative among a 

set of available GPU implementations. 

 

4.3.1 Motivation 

In this section, we present some motivating facts that show the potential of GPUs as 

accelerators of graph algorithms and give an intuition of why a dynamic solution can be 

preferable to a static one. First, we characterize some graph datasets used in real-world 

applications. Second, we introduce the main architectural features of modern GPUs, and 

discuss their suitability to the deployment of graph algorithms. 

A. Characterization of Graph Datasets 

Graphs are a powerful representation used in many practical applications, where the 

relationships among the nodes in some network are relevant. Some examples drawn from 

different application domains are: the road network, the web link network and the social 

network. The road network is typically extracted from GPS maps and used to calculate 

the optimal route (or shortest path) between two endpoints. The web link network 

contains links between web pages, and its connectivity is typically used by search 

algorithms to rank the results of queries. The social network contains relationships 

between individuals, and is used to compute a variety of connectivity properties (in 

applications like Facebook, for instance, such relationships are used to suggest new 

friends). 

We use graphs from the 9th and the 10th DIMACS implementation challenges [109, 

110] and from the Stanford Large Data Collection [111]. In particular, we consider 
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datasets used in different application domains: the Colorado road network [109], a paper 

co-citation network (from the CiteSeer library) [110], a p2p networking network [111], 

the Amazon co-purchase network [111], the Google webpage link network [111] and a 

SNS network (from Live-Journal) [111]. All but the road network and the paper co-

citation network are directed graphs. Table 3 shows a characterization of these datasets, 

in terms of total number of nodes, total number of edges and node degree (that is, number 

of edges per node). We observe the following facts. 

• The graph size varies considerably across the datasets: from the small p2p 

network (with about 36.6 K nodes and 183.8 K edges) to the large SNS network 

(with about 4.3 M nodes and 34.5 M edges). 

• The average node outdegree also varies considerably: from 2.4 in the CO-road 

network, to 73.9 in the CiteSeer network. Four networks (CiteSeer, p2p, Google 

and SNS) exhibit a considerable outdegree variance, leading to large outdegree 

values. The other networks (CO-road and Amazon) have a more regular structure. 

Figure 27 shows the outdegree distribution of the CO-road, the Amazon and the 

CiteSeer network. As can be seen, these networks exhibit different characteristics. The 

CO-road graph is pretty sparse: most of its nodes have an outdegree from 1 to 4, and the 

maximum outdegree is 8.  This is because most towns are usually directly connected to a 

Table 3: Dataset characterization. 

Network # Nodes # Edges 
Node Outdegree 

min max avg 

CO-road 435,666 ~1 M 1 8 2.4 
CiteSeer 434,102 ~16 M 1 1,188 73.9 

p2p  36,692 ~0.18 M 0 1,383 10.0 
Amazon 396,803 ~1.7M 0 10 8.4 
Google  739,454 ~2.5 M 0 456 6.9 

SNS 4,308,452 ~34.5 M 0 20,293 16.0 
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Figure 27: Outdegree distributions of CO-road, Amazon and CiteSeer networks 

handful of other towns, whereas few bigger cities serving as transportation hubs have as 

many as 7-8 intercity roads. The Amazon network is very regular: 70% of the nodes have 

10 outgoing edges, and the remaining nodes have an outdegree uniformly distributed 

between 1 and 9. The CiteSeer network is far less regular: about 90% of the nodes have 

less than 200 outgoing edges. On the other hand, the outdegree range is very wide for the 

remaining nodes (up to 1,188). The outdegree distribution of the p2p, the Google and the 

SNS networks is similar to that of the CiteSeer graph.  

This fact has a practical significance. Most graph algorithms proceed iteratively. In 

each iteration, they visit the local neighborhood of a working set consisting of nodes or 

edges, remove elements from the set and add new elements to it. Intuitively, large 

outdegree lead to large working sets, and thus to potentially high amounts of parallelism. 

However, unbalanced outdegree distributions can cause work imbalances during graph 

traversals. An adaptive solution may therefore better support a wide variety of graphs, 

including those with irregular topologies. 

B. Imbalanced Work of Graph Algorithms 

In this work, we focus on breadth-first search (BFS) and single-source shortest path 

(SSSP), two fundamental graph problems. BFS computes the depth of each node n, that is, 

the minimum number of nodes visited when moving from a given source node to n. SSSP 

computes the minimum cost paths from a given source node to any other node in the 
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Figure 28: Unordered SSSP – size of the working set during the execution (CO-road, 
Amazon and CiteSeer networks) 

graph. These problems are solved through an iterative graph traversal. Initially, the 

working set consists of the source node. In each traversal step the local neighborhood of 

the working set is processed. The traversal terminates when the working set becomes 

empty. During execution, two kinds of work imbalance can take place.  

• Inter-iteration work imbalance - The size of the working set typically changes 

from iteration to iteration. For example, Figure 28 shows how the size of the 

working set varies during the execution of SSSP on three datasets (CO-road, 

Amazon and SNS). As can be seen, the work is generally limited at initial stages, 

when the traversal is restricted to the neighborhood of the source node. When 

enough nodes have been processed, the working set starts growing and keeps 

growing until a large fraction of the nodes have been visited. At that point, the 

working set starts shrinking. The working set size and the convergence speed 

depend on the specific algorithm and on the characteristics of the dataset. For 

instance, on the datasets of Figure 28, BFS has working set sizes from 2 to 20 

times smaller than those reported by SSSP.  

• Intra-iteration work imbalance - Different nodes can have different outdegrees. 

As a consequence, each node in the working set can be potentially associated with 

a different amount of work. This fact affects the performance of the GPU design. 
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For example, if a node-to-thread mapping is adopted on a graph with an irregular 

topology, thread divergence may arise during execution, and the performance will 

be limited by the node with the largest outdegree. 

C. Architectural pros & cons of GPUs 

GPUs are known for the massive hardware parallelism that they offer. NVIDIA GPUs 

consist of several SIMT processors, called Streaming Multiprocessors (SMs), each 

containing a set of in-order CUDA cores. In the Fermi architecture, each SM comprises 

either 32 or 48 cores (depending on the compute capability of the device). The CUDA 

programming model [112] facilitates writing parallel algorithms for GPUs. In CUDA, the 

computation is organized in a hierarchical fashion: threads are grouped into thread-blocks; 

at runtime, each thread is mapped onto a core and each thread-block is mapped onto a 

SM. In CUDA 4, as many as 64K*64K*64K blocks with at most 1,024 threads each are 

allowed. This parallelism can clearly be advantageous for graph applications that operate 

on large datasets consisting of millions of nodes and edges. 

Another characteristic of the GPU architecture is its memory hierarchy. GPUs are 

equipped with a relatively large off-chip, high-latency, read-write global memory; a 

smaller low-latency, read-only constant memory (which is off-chip but cached); and a 

limited on-chip, low-latency, read-write shared memory. The global memory can be 

accessed via 32-, 64- or 128-byte transactions and has a high access bandwidth (up to 144 

GB/sec). Multiple memory accesses to contiguous memory locations are automatically 

coalesced into a single memory transaction, thus saving memory bandwidth. The graph 

algorithms in consideration are not computation intensive, but – especially when running 

on large datasets - can be memory bound. In fact, when processing hundreds of nodes in 
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parallel, it is necessary to access their neighbors in an efficient way. The GPU high 

memory bandwidth can be beneficial for these memory intensive applications. 

Two GPU architectural features are particularly problematic when deploying graph 

algorithms on GPUs. First, SMs are SIMT-processor. During execution, threads are 

grouped into 32-element SIMT units, called warps. In every clock cycle, threads 

belonging to the same warp must execute the same instruction. Branches are allowed 

through the use of hardware masking. In the presence of branch divergence within a warp, 

both paths of the control flow operation are in principle executed by all CUDA cores. 

Therefore, the presence of branch divergence within a warp leads to core underutilization. 

Unfortunately, the irregular nature of graph algorithms leads to relatively frequent branch 

operations. Second, to fully utilize its high memory bandwidth, the GPU requires regular 

memory access patterns. In fact, contiguous memory accesses can be coalesced into few 

memory transactions when accessing global memory, and allow avoiding bank conflicts 

when accessing shared memory. However, the memory access patterns within graph 

algorithms are often irregular and hard to predict. Even if this effect can be limited by 

representing graphs with ad-hoc data structures (e.g. adjacency matrices in compressed 

sparse row form), unpredictable and irregular memory accesses cannot be fully avoided. 

 

4.3.2 Exploration Space 

In this section, we present and discuss a possible exploration space for implementing 

graph algorithms on GPU. Our study focuses on the BFS and SSSP problems. However, 

we believe that our analysis can be extended to other amorphous graph algorithms with 



75 
 

 

Figure 29: Exploration space 

similar computational patterns. We consider a 3-dimensional exploration space (Figure 

29), which is built according to the following questions. 

• Is the working set used by the algorithm ordered or unordered?  

• What is the granularity of the mapping of the work to the GPU hardware? Two 

obvious alternatives consist of mapping each element of the working set to a 

thread (fine-grained mapping) or to a thread-block (coarse-grained mapping). 

• How is the working set implemented? We will consider a bitmap-based and a 

queue-based implementation. 
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Figure 30: Ordered and unordered BFS algorithms 

A. Ordered vs. unordered algorithms 

In this work, we consider the distinction between unordered and ordered graph 

algorithms introduced by Hassaan et al. [113]. The basic idea is the following. Most 

graph algorithms operate iteratively over a working set consisting of nodes or edges; in 

unordered graph algorithms, the elements can be extracted from the working set and 

processed in any order; conversely, in ordered algorithms, an ordering relation over the 

working set imposes a constraint on the processing sequence of the elements in it.  

Figure 30 shows the pseudo-code of an ordered and an unordered BFS algorithm, 

which compute the level (or depth) of the nodes in a graph. The two algorithms differ in 

the nature of the working set (ordered vs. unordered, respectively) and in instruction 8. 

The ordered version processes each node exactly once, and adds it to the working set the 

first time it is visited (that is, when its level is undefined). The unordered algorithm may 

add the same node to the working set multiple times, as long as its level decreases when 

the node is visited. The ordered version clearly terminates when all nodes have been 
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Figure 31: Ordered and unordered SSSP algorithms 

processed. Since the node level is a monotonically decreasing function, the unordered 

version is also guaranteed to terminate.  

Figure 31 shows the pseudo-code of an ordered and an unordered SSSP algorithm 

(Dijkstra and Bellman-Ford [114], respectively). In the ordered algorithm, the working 

set is ordered by distance, and the distance of each node is updated only once. In the 

unordered version, such attribute may be updated multiple times (as long as its value 

decreases). The ordered algorithm terminates when all node distances have been set. 

Since the distance is a monotonically decreasing function, the unordered algorithm is also 

guaranteed to terminate. Note that, in the ordered version, the same node can appear 

multiple times in the working set with different weight values. However, the ordered 
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nature of the working set ensures that the node distance is updated only once with the 

minimum weight value. 

In general, ordered algorithms are more work efficient than their unordered 

counterparts (in that they process each element a minimum number of times), but take 

more iterations to converge. However, unordered algorithms may exhibit higher degrees 

of parallelism. In fact, unordered algorithms can process all the nodes in the working set 

at the same time, whereas ordered algorithms can process in parallel only elements that 

are equivalent in terms of the underlying order relation (in other words, at every iteration, 

ordered algorithms effectively process only a subset of the working set). Intuitively, 

ordered algorithms are better candidates for serial implementation, whereas unordered 

ones can be more suitable for parallel implementation. 

B. Coarse- vs. fine-grained mapping 

The second dimension of exploration has to do with the mapping granularity of the work 

to the GPU hardware. As mentioned, a graph algorithm can be expressed as a sequence of 

iterations over a working set. In each iteration, a subset of elements are extracted from 

the working set, they are processed (e.g., their depth level or their distance from a source 

node is computed), their neighborhood is queried, and possibly new elements are added 

to the working set for the next iteration. The per-element work consists on the node 

processing and on the visit to its neighborhood. In each iteration, the elements extracted 

from the working set can be processed in parallel. One question must be addressed: how 

to map the work of each node onto the GPU? 

Two basic mapping strategies can be devised: fine-grained (or thread-based) and 

coarse-grained (or block-based) mapping. In thread-based mapping, each element in the 
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working set is mapped to a GPU-thread; each thread processes such element and visits its 

neighbors. In block-based mapping, each element in the working set is mapped to a 

thread-block. Different threads within the same block handle different neighbors of the 

element. Block-based mapping exhibits two levels of parallelism: (i) active elements are 

processed in parallel by different blocks, and (ii) neighbors are visited in parallel by 

different threads. 

These mapping strategies have advantages and disadvantages. Fine-grained mapping 

is suitable for graphs with a regular topology (that is, low outdegree variance across the 

nodes) and in case of large working sets. In fact, a large outdegree distribution may cause 

work imbalances across threads during the neighborhood visit, thus leading to thread 

divergence. In addition, small working sets may lead to idle cores. The two-level 

parallelism of coarse-grained mapping is naturally suited to the GPU hardware. However, 

in the presence of nodes with small outdegree (i.e., less than 32 neighbors) this mapping 

strategy will keep some cores idle, thereby underutilizing the hardware. In addition, the 

GPU has a limited number of SMs. Therefore, block-based mapping is more suitable for 

dense graphs (i.e., graphs with high average outdegree) and for small working sets. Since 

the amount of per-node computation varies from application to application, block-based 

mapping may also be preferable when BFS and SSSP are building blocks of complex 

applications, and more work is associated to each element of the working set. In the 

pseudo-code in Figures 30 and 31, for example, if we exclude the neighborhood visit, the 

processing associated to each node is limited to setting the level/distance value. In more 

generic situations where additional work must be performed, block-based mapping brings 

an extra level of parallelism and allows distributing the work within the thread-block. 
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         (a)      

          (b)         
Figure 32: Working set: (a) bitmap vs. (b) queue 

Both strategies allow a one-to-one and a many-to-one element-to-thread/block 

assignment. In the case of thread-based mapping, for example, each thread can be 

assigned either a single, or multiple elements of the working set. This choice affects the 

configuration of the kernel launches. In this work, we adopt a one-to-one mapping, which 

maximizes the number of threads (or thread-blocks) instantiated at every kernel call. We 

note that the thread- and block-based mappings are not the only options, and intermediate 

solutions can be devised. For example, when performing the neighborhood visit, nodes 

with a high outdegree can be split across multiple threads or thread–blocks. In this work, 

we limit ourselves to the two basic mapping strategies, and do not perform this form of 

load balancing.  

C. Working set: bitmap vs. queue 

The third dimension of exploration has to do with the working set representation. 

Previous work has adopted two representations: bitmap-based [75] and queue-based [77] 

working sets (Figure 32). The former consists of a 1-dimension array of bits, each 

indicating whether the corresponding element is in the working set and must be processed 

in the current iteration. The latter consists of a queue containing the identifiers of the 
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elements to be processed in the current iteration. Bitmaps are generally used in 

combination with thread-based mapping [75]. 

Both representations have advantages and disadvantages. The bitmap solution is 

simple to implement, update and access. In fact, it requires only a one-dimensional array 

of bits, and can be accessed with minimal synchronization. However, bitmaps are 

inefficient when sparse, that is, when the working set is small. This is especially true if 

the number of threads launched is equal to the number of elements in the graph (that is, 

nodes in case of BFS and SSSP). In this case, most threads will be idle, leading to high 

GPU underutilization. This inefficiency is avoided when representing the working set as 

a queue, which contains only elements that must be effectively processed, and can be 

efficiently accessed by contiguous threads. However, a queue is more difficult to 

implement and especially to update, since it requires more synchronization mechanisms. 

 

4.3.3 Implementation 

In this section, we discuss our implementation in details.  

A. Data Structures 

On both CPU and GPU, we store the graph in compressed sparse row (CSR) form, which 

is an efficient encoding scheme also adopted in previous work [75]. CSR represents the 

nodes and the edges in the graph through two one-dimensional arrays, the node vector 

and the edge vector. The ith entry of the node vector contains an index to the edge vector. 

Specifically, such index points to the start of an adjacency list containing the neighbors of 

node i. The entries in the edge vector store node identifiers, which in turn can be used to 
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Figure 33: Compressed sparse row graph representation 

index the node vector. The size of the node vector is equal to the number of nodes in the 

graph (+1); that of the edge vector is equal to the number of edges.  

An example is shown in Figure 33, which assumes that the nodes are numbered 

starting from 0. The neighbors of nodes 2, for example, can be retrieved by first querying 

the node vector, and extracting the element at position 2 and its successor (that is, values 

4 and 6, respectively). These values represent the starting and ending index of the 

neighbors of node 2 within the edge vector. As can be seen, the elements stored in the 

edge vector from position 4 to position 6 (excluded) are 22 and 38. The node vector 

requires an extra element to point to the end of the edge vector.  

Besides the node and the edge vectors, BFS and SSSP require additional data 

structures, which we also represent in array form to allow for easy and efficient 

implementation. In particular, BFS and SSSP need an array to store the level and the 

distance information, respectively, which is node-specific. In addition, SSSP requires an 

array to record the edges’ weights. Finally, some of our implementations require a node-
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Framework of BFS and SSSP  
1: Create data structures on CPU and GPU 

2: Initialize working set on CPU 

3: Transfer working set and support data from CPU to GPU 

4: while working set is not empty do 

5:     Invoke CUDA_computation kernel 

6:     Invoke CUDA_workingset_generation kernel 
7:end while 

Figure 34: Generic CPU pseudo-code for BFS and SSSP 

specific update variable to indicate whether a node needs to be updated in the current 

iteration.  

B. Parallel Kernels 

Figure 34 shows the CPU implementation framework of BFS and SSSP. In the first three 

steps (lines 1-3), the data structures are created and initialized on both CPU and GPU, 

and the required data transfers are performed. The loop in lines 4-7 represents the graph 

traversal, which terminates when the working set becomes empty. Each loop iteration 

consists essentially of the invocation of two GPU kernels: CUDA_computation and 

CUDA_workset_gen. The former processes the elements in the working set, computes 

their level/distance value, and visits their neighborhood, adding the elements that should 

be processed in the next iteration to an update vector. Since multiple active nodes can 

have common neighbors, modifications to the update vector are performed through 

atomic operations (thus introducing some serializations). The CUDA_workset_gen kernel 

generates the working set by transforming the update vector to bitmap or queue form. 

The computation and the working set generation are split into two kernels because 

CUDA does not offer primitives for global synchronization inside kernels.   
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CUDA_computation kernel 
1’:  id = getThreadId()                                     // thread mapping 
1”:  id = getBlockId()                                       // block mapping 
2’:  if (id<nodeNumber && bitmap[id ])        // bitmap 
2”:  if (id<queue length)                                   // queue          
3:        process current node                             //compute level or distance 
4’:       current thread visits all neighbors         // generate update vector 
4”:       each thread in block visits a neighbor  // generate update vector 
5:   end if  
CUDA_workset_gen kernel 
1:    id = getThreadId() 
2:    if (id<nodeNumber && update[id]) 
3’:       generate bitmap working set                 // bitmap 
3”:       generate queue working set                  // queue 
4:    end if 

Figure 35: Pseudo-code of kernel functions (computation and workset_gen) 

The CUDA_computation kernel can be implemented according to all possible 

combinations of the alternatives in the exploration space of Figure 29. The 

ordered/unordered property determines which elements to extract from the working set 

and how to process them (Figure 30 and 31). The mapping strategy and the working set 

implementation affect how the work is distributed among threads and thread-blocks. The 

pseudo-code in Figure 34 summarizes the body of the two kernels using different 

mappings and working set representations. The 1st and 2nd lines of the pseudo-code 

partition the work among threads or thread-blocks. The 4th line represents the 

neighborhood visit. In the case of thread-based mapping, a single thread visits all the 

neighbors of the current node; in the case of block-based mapping, each thread visits a 

single neighbor. In the CUDA_workset_gen kernel, each thread processes one element in 

the update vector and, if necessary, adds it to the working set. The queue-based 

implementation requires atomic operations to avoid race conditions while adding nodes 

to the queue. 
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The ordered and unordered implementations of BFS are very similar. The ordered 

SSSP has the added complexity of finding the minimum distance value in the working set 

(findmin), operation which is not required by the unordered version of SSSP. A CPU 

implementation of ordered SSSP usually uses a heap data structure to ensure fast 

insertions in the working set and accesses to it. We implemented the findmin operation 

on GPU by parallel reduction (which is faster than maintaining a heap on CPU). 

C. Working Set on GPU 

The bitmap representation of the working set was first adopted in [75] in combination 

with thread-based mapping. The advantage of this representation is its simplicity: since 

each node has an own entry in the bitmap and is handled by a different thread (or thread-

block), no synchronization is required when accessing the working set or generating it 

from the update vector.   

The queue representation has an added complexity. As explained above, the 

CUDA_workset_gen kernel requires atomic operations to convert the update vector into 

queue form. In this work, we adopt the basic implementation described in [115]. 

Specifically, each thread uses an atomic operation only to get a unique insertion index 

within the queue. Thus, threads get indexes sequentially, but insert nodes into the queue 

in parallel. Once the queue-based working set is created, accesses to it within the 

CUDA_computation kernel are coalesced, and do not require any additional 

synchronization mechanism. 

There are several ways to improve the performances of work queues on GPU. Luo et 

al [76] propose a hierarchical queue implemented using both shared and global memory. 

The use of shared memory provides faster accesses and lighter synchronizations. To 
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avoid serialization while generating indexes into the queue, Merril et al [77] replace 

atomic operations with prefix scans. These optimizations are orthogonal to this work, but 

can certainly be applied to our reference implementations. 

 

4.3.4 Adaptive Runtime 

As discussed in the previous sections, the heterogeneity of the graphs used in practical 

applications makes it impossible to determine a single GPU implementation which is 

optimal across all datasets and algorithms. This fact is supported by the experimental 

evaluation that we will present in Chapter 4.3.5. To tackle this problem, we design an 

adaptive runtime that allows dynamically selecting the GPU implementation that better 

suits the characteristics of the dataset. Specifically, our runtime can perform coarse- and 

fine-grained decisions. First, given a graph and an algorithm (e.g. BFS or SSSP), it can 

select the best GPU implementation according to the graph topology and the underlying 

GPU hardware. Second, while processing a graph, our runtime can dynamically switch 

between different implementations of the same algorithm in different phases of the 

traversal. 

A. Overview 

The structure of our adaptive framework is shown in Figure 36. We expose to the user an 

API consisting of an abstract graph data type. Such API provides primitives to define and 

instantiate graphs, as well as functions to run the SSSP and BFS algorithms on them. At 

the low level, we have different GPU implementations for both SSSP and BFS, as 

defined by the exploration space described in Figure 28. Between the graph API and the 

algorithm implementation layers, we have a runtime layer. Such runtime consists of two 
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Figure 36: Overview of our adaptive framework 

components: a graph inspector and a decision maker. The former inspects relevant 

characteristics of the graph (e.g., number of nodes, number of edges, minimum, 

maximum, average node degree), and monitors significant runtime attributes (e.g., 

working set size). The latter dynamically selects the most suitable implementation based 

on the values of these attributes and on the hardware characteristics of the underlying 

GPU. 

In our experimental evaluation, we found that unordered implementations of both 

BFS and SSSP generally perform better than their ordered counterparts. This 

observation is coherent with [113]; this result is due not only to the larger amount of 

parallelism available in unordered graph algorithms, but also to the overhead due to 

applying the order relationship to the working set in case ordered versions. Therefore, our 

adaptive framework uses only unordered versions of SSSP and BFS, and makes decisions 

in two dimensions: mapping method and working set implementation. This leads to 4 
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combinations: (1) thread mapping + bitmap, (2) thread mapping + queue, (3) block 

mapping + bitmap, and (4) block mapping + queue. As discussed below, the selection 

mechanism takes the utilization of the GPU hardware into account: specifically, we 

consider the fraction of cores and SMs effectively used, as well as the amount of thread 

divergence introduced. 

B. Selection of the Mapping Method  

The first decision to be made by our runtime system is whether to use thread- or block-

based mapping. This decision is based on two considerations: core/SM utilization and 

amount of thread divergence introduced. 

Core/SM utilization - As mentioned in Chapter 4.3.1.C, in CUDA thread-blocks are 

mapped onto SMs and threads are mapped onto cores. In Fermi GPUs (used in this work), 

each SM consists of 32 or 48 cores. In each graph traversal step, only nodes belonging to 

the working set need to be processed. The working set size is an indicator of the amount 

of coarse-grained parallelism available within a graph traversal step. Thus, small working 

sets (for which thread-based mapping is unable to fully utilize the available GPU cores) 

make block-based mapping preferable. Thread-based mapping becomes a viable option 

when the working set size approximates the number of cores available on the GPU.  

In case of large working sets, both thread- and block-based mapping are viable 

options, and an additional selection criterion is required. To this end, we consider the 

average outdegree of the nodes in the graph. In case of block-based mapping, the 

neighborhood visit is cooperatively performed by the threads within the block (that is, 

each thread will process one or more neighbors). The minimum practical size for a 

thread-block corresponds to the warp size (i.e., 32 threads). If block-based mapping is 
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used, an average outdegree well below the warp size causes cores within a SM to be 

unutilized. Therefore, a small average outdegree makes a thread-based mapping 

preferable to block-based mapping. 

Thread divergence – Using the average outdegree to discriminate between thread- 

and block-based mapping helps also with another consideration: in case of thread-based 

mapping, better performances are achieved if the amount of warp divergence is limited. 

Since, in case of thread-based mapping, every thread processes all the neighbors of an 

active node, the performances of each warp will be limited by the node with the largest 

outdegree. In particular, large outdegree variance may cause warp divergence. As can be 

observed in Table 3, graphs with high average outdegree tend to exhibit uneven 

outdegree distributions. By using thread-based mapping only when the average outdegree 

is low, we limit the amount of thread divergence, which would originate by unbalanced 

outdegree distributions.    

C. Selection of the Working Set Representation 

The second decision to be made by our runtime is the working set representation, i.e., 

bitmap vs. queue. As discussed in Chapter 4.3.2.C, a queue implementation involves a 

larger number of synchronizations. In particular, the creation of the queue requires a 

number of atomic operations equal to the queue length; such atomic operations introduce 

serialization among threads, thus degrading performance. This suggests that bitmaps are 

preferable to queues in the presence of large working sets. This criterion is also coherent 

with another consideration. When using a bitmap representation, there will be a one-to-

one mapping between threads (for thread-based mapping) or blocks (for block-based 

mapping) and nodes. Small working sets can cause many threads/blocks to be invoked 
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without performing any real work, leading to core/SM underutilization. Specifically, in 

case of a bitmap representation and a graph with |N| nodes, a working set of size |WS| 

leads to a fraction of wasted threads/blocks equal to 1-|WS|/|N|. In conclusion, small 

working sets will be implemented using a queue, and large ones using a bitmap.  

D. Decision Space 

The decision space resulting from the previous considerations is illustrated in Figure 36. 

We represent the size of the working set along the x-axis, and the average outdegree of 

the graph along the y-axis. This decision space is broken into 5 regions by three threshold 

values: T1, T2 and T3. In particular, T1 and T2 correspond to the considerations made for 

the selection of the mapping method, and T3 to the one for the choice of the working set 

representation. 

The areas in the decision space represent different implementations. To the left of T2, 

the implementation will always be B_QU (block-mapping + queue).  Between T2 and T3, 

the working set is implemented with a queue while the mapping strategy depends on the 

average node outdegree (see T1). To the right of T3, the working set is represented as a 

bitmap, and the mapping still depends on the average outdegree (T1). T1, T2 and T3 are 

experimentally tuned, as discussed in Chapter 4.3.5. 

E. Runtime Overhead 

To understand the overhead introduced by our runtime, we must consider its two 

components: the decision maker and the graph inspector. The former has extremely low 

overhead since its logic (summarized by Figure 37) is straightforward. In order to allow 

the decisions described above, our graph inspector must monitor the working set size and 

the average outdegree of the nodes within the working set. This information can be 
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Figure 37: Design space 

collected at runtime by running a 

separate kernel (parallel scan can allow a 

more efficient computation of the 

average outdegree). This overhead is 

much greater than that of the decision 

maker. In our implementation, we 

reduce this overhead in two ways: (i) by 

considering the average outdegree of the whole graph (which is a value computed only 

once when reading the graph) rather than the one of the current working set, and (ii) by 

sampling (that is, by not performing measurements in every traversal step). These design 

decisions represent a trade-off between execution efficiency and runtime overhead. The 

selection of the sampling rate and its effect on performances will be discussed in Chapter 

4.3.5. 

 

4.3.5 Experimental Evaluation 

We present an experimental evaluation on the datasets of Table 3. We first evaluate the 

static implementations corresponding to Figure 29. We then study how to tune the 

parameters of our adaptive runtime. We finally compare the performance achieved 

through our runtime with those achieved through the static solutions. 

Our testing platform consists of an Intel Core i7 CPU (running CentOS 5.5) and an 

Nvidia Tesla C2070 GPU, which contains 14 32-core SMs. We use gcc 4.1.2 and nvcc 

4.0 compilers, both with –O3 optimizations. Our results include CPU processing, GPU 
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Table 4: Speedup of BFS (GPU implementation over serial CPU baseline) 

 O_T_BM O_T_QU O_B_BM O_B_QU U_T_BM U_T_QU U_B_BM U_B_QU 

CO-road 0.81 1.12 0.04 1.15 0.94 1.50 0.04 1.49 
CiteSeer 24.39 15.63 12.35 49.22 24.68 15.04 12.48 48.94 

p2p  3.79 3.34 0.93 3.22 3.66 3.44 0.95 3.37 
Amazon 13.59 11.12 2.05 10.62 13.94 10.60 2.07 11.52 
Google 20.76 18.82 2.94 18.90 21.57 18.03 2.96 20.36 

SNS 20.39 16.33 8.43 24.02 24.04 18.00 8.64 24.30 
 

processing and CPU-GPU transfer times. We do not measure the time spent loading 

graph data from the hard drive.  

A. Performance of Static Implementations 

Tables 4 and 5 summarize the performances of the BFS and SSSP implementations 

covering the exploration space in Figure 29. In particular, the tables report the speed up 

of each GPU implementation over a serial CPU implementation. All the GPU solutions 

are named with three fields separated by underscore. The first field indicates whether the 

implementation is ordered (O) or unordered (U); the second field distinguishes thread-

based (T) and block-based (B) mapping; the third field indicates the representation of the 

working set: bitmap (BM) vs. queue (QU). For instance, “O_B_BM” indicates that the 

implementation is ordered, uses block-based mapping and a bitmapped working set. For 

each dataset, grey cells show the best performance achieved.  

The tables show the results reported using the best kernel configurations, which have 

been obtained by using the “CUDA Occupancy Calculator” and conducting experiments 

under different settings. When using thread-based mapping, we found that the best results 

can be achieved with 192 threads per block. When using block-based mapping, the 

optimal number of threads per block is the multiple of 32 closest to the average node 

outdegree in the graph. 
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Table 5: Speedup of SSSP (GPU code over serial CPU baseline) 

 O_T_BM O_T_QU O_B_BM O_B_QU U_T_BM U_T_QU U_B_BM U_B_QU 

CO-road 0.02 0.01 0.0012 0.01 1.88 1.76 0.35 2.11 
CiteSeer 136.23 112.77 11.81 139.53 126.47 118.91 483.24 867.91 

p2p  1.29 1.16 0.22 1.22 135.65 127.38 49.17 131.88 
Amazon 3.29 3.03 0.26 3.12 95.10 58.93 37.71 99.83 
Google 2.27 2.16 0.18 2.19 96.57 58.12 32.94 89.32 

SNS 25.37 24.33 1.87 24.81 174.82 140.45 136.08 276.23 
 

For BFS, we can make the following observations. First, when using the same 

mapping strategy and working set representation, ordered and unordered algorithms 

achieve very similar performance. In ordered BFS, the nodes are processed level by level 

and each node is accessed exactly once. In unordered BFS, in principle each node may be 

updated multiple times. However, since in every iteration we process the entire working 

set, our unordered GPU implementation also proceeds level by level, unless the working 

set is initialized through some depth-based traversal. We experimentally verified that 

limited amount of initialization (e.g., depth-based traversal in 3-5 directions) does not 

substantially affect the results. Second, the GPU implementation does not outperform its 

CPU counterpart on all datasets. In fact, the GPU performance is poor for the CO-road 

network, whose average outdegree is only 2.6 (see Table 3), and whose diameter is 

relatively large (more than 1000 levels). Third, the best GPU implementation varies from 

dataset to dataset. For instance, the CO-road and CiteSeer networks favor U_B_QU, 

while the Amazon and p2p networks achieve best performance with U_T_BM. 
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Figure 38: Processing speed of bet implementation 

For SSSP, we can observe the following facts. First, unordered algorithms are 

significantly faster than their ordered version. This has two motivations: (1) unordered 

SSSP exhibits more parallelism than ordered SSSP, and (2) ordered SSSP suffers from 

the cost of implementing the findmin operation. Second, the ordered SSSP on GPU can 

achieve considerable speedup over its serial CPU version. In every iteration, nodes at the 

same distance can be processed in parallel. In addition, the parallel reduction on GPU is a 

good alternative to executing the findmin operation on CPU. Third, by concurrently 

processing the elements in each node’s neighborhood, block-based mapping leads to high 

speedups on graphs with large average outdegrees (e.g., CiteSeer and SNS). Finally, we 

can again observe that the best implementation strictly depends on the dataset; for 

example U_B_BM performs very well on CiteSeer, but exhibits the worst performance 

on the other 5 datasets. 

Figure 38 shows the processing speed (in millions nodes per second) of the best GPU 

implementation of BFS and SSSP across the considered datasets. BFS achieves better 
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performance than SSSP due to its faster convergence. Our experiments show similar 

results to previous work [76] and prove that GPU can be successfully used to run graph 

algorithms on large datasets. Since our results show that the best solution depends on the 

characteristics of the underlying dataset, we now evaluate the use of our adaptive runtime. 

B. Parameter Tuning for our Adaptive Runtime. 

Before evaluating the performance of our adaptive runtime, we study how to tune its 

parameters. In particular, we start with T1, T2, and T3, the thresholds used by the decision 

maker and illustrated in Figure 37. 

Recall that T1 is related to the average outdegree of the graph, and allows 

discriminating between thread- and block-based mapping when the size of the working 

set would allow both alternatives. Since each thread-block must at least contain one warp 

(i.e., 32 threads), if the average outdegree is less than 32, block-based mapping will 

underutilize the hardware resources. Thus, we set T1 to 32. 

T2 indicates the size of the working set below which block-based mapping should be 

always preferred to thread-based mapping. Its value is related to the kernel configuration 

and the number of SMs on the GPU. As mentioned in the previous section, we 

experimentally verified that good configurations for thread-based mapping are 

characterized by 192 threads per block. The GPU used in our experiments has 14 SMs. 

When the size of the working set is less than 192*14 = 2,688 nodes, thread-based 

mapping will leave some SMs idle, thus underutilizing the GPU. To confirm this analysis, 

we measure the kernel execution time of T_QU and B_QU across all iterations of BFS 

and SSSP. Our results show that B_QU outperforms T_QU for working set sizes smaller 

than ~3000. Therefore, we set T2 to 2,688. 
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Figure 39: Performance under different T3 settings (SSSP) 

T3 indicates the size of the working set above which a bitmap representation is 

preferable to a queue. In Figure 39, we report the results of experiments conducted to 

study how the performance changes with T3. We recall that the ratio between the size of 

the working set and the number of nodes in the graph indicates, in case of a bitmap 

representation, the fraction of threads/blocks instantiated that will effectively perform 

some work. Therefore, in the x-axis we show the percentage ratio of T3 over the number 

of nodes in the graph. As can be seen, for all datasets but CiteSeer, the execution time 

increases with T3. This can be easily explained as follows: in the presence of large 

working sets, the queue generation incurs higher overheads due to atomic operations. 

When the ratio T3/#node is less than 6%, the execution time increases very slowly. 

However, when it exceeds 7% or 8%, the execution time increases rapidly (CO-road, p2p 

and SNS). Although this trend is not exactly the same for all datasets, we set the value of 

T3 to 6%. It is worth explaining why, in the case of CiteSeer, the execution time 

decreases even when the ratio T3/#node reaches 13%. The CiteSeer dataset is 

characterized by a high average outdegree, which leads to higher parallelism. In case of a 
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Figure 40: Performance under different sampling rates (SSSP) 

queue implementation, the amount of work performed within a thread-block amortizes 

the overhead due to the atomic operations performed when generating the queue, making 

a queue preferable to a bitmap. 

The graph inspector introduces a runtime overhead while monitoring the working set 

size. Such overhead can be reduced by performing this measurement task periodically, 

rather than at every iteration. Figure 40 shows the performance under different sampling 

rates. Due to lack of space and given the similarity between BFS and SSSP, we show 

only the SSSP results. We can observe that the performance generally benefits from a 

decreased sampling rate. However, the changes are not smooth and vary across datasets. 

In general, datasets characterized by a longer convergence time (e.g. CO-road, CiteSeer, 

and SNS) experience a slow and steady performance improvement as the sampling rate 

decreases. On the other hand, graphs that take only a few iterations to converge (e.g., 

Google, p2p) are more sensitive to changes in the sampling rate. To make a trade-off, we 

set the sampling rate of our adaptive runtime to 6. With this setting, we observed a 

runtime overhead varying from 10.6% (on CiteSeer) to 13% (on p2p).  
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Figure 41: Performance of our adaptive runtime on BFS (to the left) and SSSP (to 

the right) – baseline: best static solution 

C. Overall Performance of Adaptive Runtime 

Figure 41 shows the speedup comparison between our adaptive runtime, the worst and 

the best static solution. In every case, the best static implementation is taken as baseline. 

Only unordered implementations are considered (also for the worst case). The values 

reported on the bars are the speedup numbers of the worst static and of the adaptive 

solution over the best static implementation. Since our goal is to argue that an adaptive 

system can capture dynamic parallelism and not to develop a highly tuned code, in our 

study we use basic kernels similar to those by Harish and Narayanan [75]. However, the 

performance achieved by our dynamic solution is in the same order of magnitude as that 

achieved by Merrill et al [77] (for example, our dynamic BFS computes 0.74 billion 

edges/sec on the CiteSeer network).  

We can observe the following. First, the performance of the worst static solution can 

be as low as 3% (and as high as 52%) of that of the best static solution. Second, despite 

its overhead, our adaptive runtime achieves better performance than the best static 

implementation on most of these real world graphs. Specifically, the speedup over the 

best static solution ranges from 1.43 to 2.02. Although on CiteSeer, Google (SSSP) and 

SNS (SSSP) the adaptive runtime has no advantage compared to the best static solution, it 
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still achieves 95-99% of its performance (and avoids the penalty associated with possibly 

choosing a bad implementation).  

 

4.4 Parallelization Templates 

The effective deployment of applications exhibiting irregular nested parallelism on GPUs 

is still an open problem. A naïve mapping of irregular code onto the GPU hardware often 

leads to uneven work distribution. As a consequence, simple parallelization templates 

handling all the loop iterations in the same way may lead to hardware underutilization. 

On the other hand, adding simple load balancing mechanisms to the parallelization may 

allow a better mapping of work to hardware and, consequently, it may improve the 

application performance. In this work, we focus on simple load balancing schemes and 

study the use of dynamic parallelism as a means to achieve better hardware utilization. 

Specifically, we investigate mechanisms to effectively distribute irregular work to 

streaming multiprocessors and GPU cores. Some of our parallelization templates rely on 

dynamic parallelism, a feature recently introduced by Nvidia in their Kepler GPUs and 

announced as part of the OpenCL 2.0 standard. We propose mechanisms to maximize the 

work performed by nested kernels and minimize the overhead due to their invocation. 

Our parallelization techniques can be incorporated in compilers, thus freeing the 

programmer from the need to worry about the mapping of work to the hardware and to 

understand the complex semantics of GPU dynamic parallelism.  
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4.4.1 Motivation 

GPUs present two levels of hardware parallelism: streaming multiprocessors and CUDA 

cores in Nvidia’s parlance, and SIMD units and stream processors in AMD’s. Commonly 

used programming models for many-core processors, such as CUDA and OpenCL, 

expose this two-level hardware parallelism to the programmer through a two-level 

multithreading model: at a coarse grain, CUDA thread-blocks and OpenCL work-groups 

are mapped onto streaming multiprocessors and SIMD units; at a fine grain, CUDA 

threads and OpenCL work-items are mapped onto cores and stream processors. An 

additional level of parallelism is provided by the opportunity to launch multiple kernels 

concurrently through CUDA streams and OpenCL command queues. In addition, Kepler 

GPUs allow nested kernel invocations; this functionality, called dynamic parallelism, has 

recently been announced as part of the OpenCL 2.0 standard and will soon be included in 

AMD devices. In the remainder of this paper, we will use CUDA terminology. 

Despite the presence of hardware and software support for nested parallelism, finding 

the optimal mapping of algorithms exhibiting multiple levels of parallelism onto GPUs is 

not a trivial problem. Especially in the presence of irregular computation, a naïve 

mapping of irregular code onto the GPU hardware can lead to resource underutilization 

and, thereby, limited performance. Besides allowing recursion, dynamic parallelism has 

the potential for enabling load balancing and improving the hardware utilization. This is 

because nested kernels, each with a potentially different degree of parallelism, are 

dynamically mapped to the GPU cores by the hardware scheduler according to the 

runtime utilization of the hardware resources. Unfortunately, the effective use of this 
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feature has yet to be understood: the invocation of nested kernels can incur significant 

overhead [91] and may be beneficial only if the amount of work spawned is substantial.  

In this work, we only consider applications containing parallelizable irregular nested 

loops. We propose and analyze different parallelization templates aimed to improve the 

hardware utilization and the performance – some of them leveraging the dynamic 

parallelism feature [116]. Our goal is to propose and evaluate simple and yet effective 

mechanisms that can be incorporated in GPU compilers. 

 

4.4.2 Irregular Nested Loop 

The hierarchical nature of the GPU architecture leads to two logical ways to map parallel 

loops onto the hardware: different loop iterations may be mapped either to GPU cores 

(thread-based mapping) or to streaming multiprocessors (block-based mapping) [102]. In 

the former case, loop iterations are assigned to threads; in the latter, they are assigned to 

thread-blocks. For brevity, we will use the terms thread- or block-mapped loops and 

kernels to indicate loops and kernels parallelized with one of these two approaches. In the 

presence of loop nesting, the mapping of inner loops depends on the mapping performed 

on the outer loops. For example, thread-based mapping on an outer-loop will cause 

serialization of all inner loops, while block-based mapping on an outer-loop will allow 

thread-based mapping on the inner loops. In addition, stream-based mapping (whereby 

different iterations of the loop are assigned to different CUDA streams) offers an 

additional degree of freedom to the parallelization process. During code generation, 

compiler analysis is required to identify the type of GPU memory where each variable 

must be stored and the need for synchronization and reduction operations to access 
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Figure 42: Parallelization templates for 
irregular nested loops 

shared variables. For example, in 

the presence of a block-mapped 

outer loop and a thread-mapped 

inner loop, variables defined inside 

the outer loop but outside the inner 

loop will be shared by all threads 

in a block. Therefore, these 

variables will need to be stored in 

shared memory, and their access 

by threads within the inner loop 

will require synchronization. 

Simply relying on thread- and 

block-based mapping in the 

parallelization process is 

acceptable for regular nested loops, 

wherein the number of iterations of 

an inner loop does not vary across the iterations of the outer loop. However, this simple 

solution may lead to inefficiencies when applied to irregular nested loops, for which this 

property does not hold. Irregular nested loops have the structure of the code in Figure 

42(a). As can be seen, the number of iterations of the inner loop is a function of i, the 

outer loop variable. In the case of irregular nested loops, the use of thread-based mapping 

on the outer-loop may cause warp divergence (i.e., different threads are assigned different 

amounts of work), while the use of block-based mapping will lead to uneven block 
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utilization, which in turn may cause GPU underutilization. Load balancing of irregular 

nested loops is one of the use cases for GPU dynamic parallelism. By launching nested 

grids of variable size, dynamic parallelism has the potential for improving the GPU 

utilization. However, despite its overhead has been reduced in recent CUDA distributions, 

the effective use this feature depends on the amount of work spawned in each kernel 

invocation. 

We consider different parallelization templates aimed to perform load balancing in 

the presence of irregular nested loops. The proposed code variants trade off the 

advantages and disadvantages of thread- and block-based mapping, respectively. In 

particular, in Figure 42(b-e) we illustrate the load-balancing variants of the thread-based 

mapping template. Those variants rely on a load balancing threshold parameter (lbTHRES). 

The dual-queue template in Figure 42(b) divides the elements processed in the outer loop 

in two queues depending on the number of iterations they require in the inner-loop and 

processes those queues separately using thread- and block-based mapping, thus reducing 

the warp divergence of the former and the block-level work-imbalance of the latter. The 

delayed-buffer template in Figure 42(c) delays the execution of large iterations of the 

outer loop by queuing them in a buffer and then processing them using block-based 

mapping. We consider two versions of this template: one that stores the buffer in global 

memory (dbuf-global), thus requiring two kernel calls and allowing redistributing the 

work among thread-blocks in the second phase; the other that stores the buffer in shared 

memory (dbuf-shared), thus requiring a single kernel invocation but possibly leading to 

uneven work distribution among thread-blocks. The naïve dynamic parallelism (dpar-

naïve) template in Figure 42(d) invokes a nested call for each “large” iteration (and 
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performs the dynamic parallelism calls at a thread level). Finally, the optimized dynamic 

parallelism template (dpar-opt) in Figure 42(e) delays spawning nested calls to a second-

phase; by invoking a single dynamic parallelism call for each thread-block, this code 

variant spawns fewer and larger kernels. 

We note that GPU dynamic parallelism has fairly elaborate semantics. For example, 

nested kernel calls are performed by threads, but their synchronization happens at the 

level of thread-blocks; registers and shared memory variables are not visible to nested 

kernels; memory coherence and consistency between parent and child kernels require 

explicit synchronization; and concurrent execution requires the use of CUDA streams. 

Fortunately, the proposed parallelization templates for nested loops are simple and can be 

incorporated in a compiler, allowing the programmer to write only the simplified code in 

Figure 42(a).  The automatic generation of the code variants corresponding to the 

proposed parallelization templates by a compiler will therefore hide from the programmer 

not only the two-level hardware and software organization of the GPU, but also the 

execution and memory model of GPU dynamic parallelism. 

Several factors may impact the effectiveness of the proposed parallelization templates. 

For example, the optimal load balancing threshold (lbTHRES) will depend on the 

underlying dataset and algorithm. In addition, the performance of each parallelization 

template will depend on the characteristics of the algorithm (that is, the nature of the 

work in Figure 42). We explore these aspects in our experimental evaluation. 
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4.4.3 Experimental Evaluation 

A. Experimental Setup 

Hardware and Software Setup: We run all our experiments on a server equipped with a 

Xeon E5-2620 CPU and an Nvidia K20 GPU. The machine uses CentOS release 6.4. We 

compiled and run our code using gcc v4.4.7 and CUDA v6. We used Nvidia Visual 

Profiler to collect the profiling data presented in our analysis.  

Benchmark Applications: We evaluated the performance of the proposed 

parallelization templates on four applications, which include irregular nested loops (SSSP, 

BC, PageRank, SpMV). Whenever available, we used open-source implementations of 

these applications as baselines.  

• Single-Source Shortest Path (SSSP): For SSSP, we used the thread-mapped 

implementation described in [75] as baseline. SSSP is a memory intensive 

application with scattered memory accesses.  

• Betweenness Centrality (BC): A node’s BC is an indicator of its centrality in a 

network, and its value is equal to the number of shortest paths from all nodes to 

all others that pass through that node. Our parallel implementation is based on 

Brandes' algorithm and operates in two phases. First, it constructs the shortest 

paths tree using BFS (we consider unweighted graphs); second, it computes the 

BC value by traversing the shortest path tree. Both phases present irregular nested 

loops and scattered memory accesses.  

• PageRank: PageRank is a popular graph analysis algorithm to rank web pages. 

We consider the GPU implementation described in [117] as a reference. This 

algorithm contains a parallelizable, irregular nested loop: each iteration of the 
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outer loop processes a different webpage (node in a graph); the inner loop collects 

ranks from the neighbors of the considered node.  

• Sparse Matrix-Vector multiplication (SpMV): SpMV [118] calculates the 

product of a sparse matrix and a dense vector, and is an important building block 

for diverse applications in scientific computing, financial modeling and 

information retrieval. Since the sparse matrix is represented in Compressed 

Sparse Row format, the nested loop within the matrix multiplication algorithm is 

irregular.  

Datasets: For SSSP, PageRank and SpMV, we use CiteSeer, a paper citation network 

from the DIMACS implementation challenges [7]. CiteSeer [119] has about 434 thousand 

nodes, 16 million edges and a node outdegree that varies from 1 to 1,188 across the graph 

(with an average of 73.9). For BC we use Wikipedia’s who-votes-on-whom network 

(Wiki-vote) [120], a small-world network consisting of about 7 thousand nodes, 100 

thousand edges and a node outdegree that varies from 0 to 893 across the graph (with an 

average of 14.6.9). 

B. Experimental Results 

In this section, we first discuss the selection of the kernel configurations used in our 

experiments; we then illustrate the rationale of our experiments by presenting some 

results on SSSP; and we finally complete our discussion by comparing the results 

reported on PageRank, BC and SpMV.  

All the charts presented in this section report the speedup of the code variants derived 

from the use of the parallelization templates in Figure 42 over a baseline implementation 

that uses thread-mapping in the outer loop and no load balancing. The baseline GPU 
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implementations achieve the following speedups over serial CPU code: 8.2x (SSSP), 2.5x 

(BC), 15.8x (PageRank) and 2.4x (SpMV).  

Kernel configurations – Recall that the parallelization templates in Figure 42 

include two phases: one using thread-based mapping and one using block-based mapping. 

For example, the dbuf-global scheme first invokes a kernel where the outer loop is 

parallelized with thread-based mapping, and then it invokes a kernel that uses block-

based mapping to process the delayed buffer. Here, we discuss the selection of the kernel 

configuration used in both cases.  

For thread-based mapping, we leverage the CUDA occupancy calculator to determine 

the optimal thread-block size. Since the considered applications have a low register and 

shared memory utilization (and some of them do not use shared memory at all), the 

optimal block size results to be large in all cases. Specifically, we use 192 threads per 

block, equaling the number of cores per streaming multiprocessor on Kepler GPUs. We 

recall that in a thread-mapped implementation each thread is assigned one or more 

iterations of the outer loop in Figure 42(a). Hence, we configure the number of blocks to 

be run based on the block size, the total number of iterations to be run and the maximum 

grid configuration allowed on Kepler GPUs. 

In case of block-based mapping, each iteration of the outer loop is assigned to a 

thread-block, and threads within a block execute iterations of the inner loop. A small 

thread-block configuration will tend to assign multiple iterations of the inner loop to each 

thread. Conversely, large blocks may lead to hardware underutilization, as some 

iterations of the outer loop may not present enough parallelism to fully exploit the GPU 

cores on a streaming multiprocessor. We recall that the value of the lbTHRES (load 
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(a) lbTHRES = 64                    (b) lbTHRES = 128                     (c) lbTHRES = 192 

Figure 43: SpMV: Speedup of load balancing code variants over basic thread-mapped 
implementation under different settings 

balancing threshold) parameter determines the iterations of the outer loop that are 

processed in the second, block-mapped phase of the code.  

We performed a set of experiments to determine good block size configurations to be 

used in the block-mapped portions of the code under different lbTHRES settings. Figure 43 

shows the results of experiments performed on SpMV using different block size 

configurations and various settings of parameter lbTHRES. All experiments are run on the 

CiteSeer network. We omit the dpar-naïve implementation because, as we will show later, 

it greatly underperforms the other code variants. According to the CUDA occupancy 

calculator, small blocks consisting of 32 threads lead to low hardware occupancy. Our 

experiments confirmed low performance with fewer than 32 threads per block; therefore, 

here we consider block sizes ≥ 64. As can be seen, the performance is insensitive to the 

block size but mainly affected by lbTHRES. Some templates perform better in the presence 

of smaller blocks, especially for small values of lbTHRES. We observed similar results on 

the other applications with different datasets. These results can be explained as follows. 

A block size larger than the value of lbTHRES may lead to hardware underutilization. To 

understand why, refer to the pseudo-code in Figure 42. All outer loop iterations 

presenting an inner loop size f(i) greater than lbTHRES are processed in a block-mapped 
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Figure 44: SSSP: Speedup of load balancing code variants over basic thread-

mapped implementation 

fashion. If f(i) is smaller than the block-size,  the threads within the block may not be 

assigned any work, leading to GPU underutilization. Therefore, in the remaining 

experiments we use small blocks consisting of 64 threads for the block-mapped kernels. 

Results on SSSP: We now compare the performance of the five parallelization 

templates on SSSP. We refer to the basic implementation described in [75], which 

encodes the graph data structure in Compressed Sparse Row (CSR) format (more 

information can be found in [75]). When a graph is represented in CSR format, its 

traversal assumes the form of the nested loop in Figure 41(a), where the outer loop 

iterates over the nodes in the graph, and the inner loop over the neighbors of each node i. 

In irregular graphs where the node outdegree (f[i]) varies significantly from node to node, 

this traversal loop is irregular. Here, we show experiments performed on CiteSeer. Figure 

44 shows the speedup of all code variants over the baseline thread-mapped 

implementation; the number of nested kernel calls performed by the two dynamic 

parallelism-based solutions are reported on top of the bars. Due to the irregular nature of 

the CiteSeer graph, almost all code variants that include load balancing outperform the 
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basic thread-mapped implementation. The dpar-naïve code variant is the exception: due 

to the overhead of the large number of (small) nested kernel calls performed, this 

implementation leads consistently to (often significant) performance degradation. The 

delayed buffer-based and the optimized dynamic parallelism-based code variants yield 

the best results, and the performance improvement depends on the value of the load 

balancing threshold, which affects the amount of load balancing performed. The optimal 

value of this parameter corresponds to the warp size (no improvements were observed for 

lbTHRES<32).  

To better understand these results, we used the Nvidia Visual Profiler to collect three 

performance metrics: the warp execution efficiency (ratio of the average active threads 

per warp to the maximum number of threads per warp on a streaming multiprocessor), 

and the global memory load and store efficiency (ratio of the number of requested 

memory load and store transactions to the actual number of load and store transactions 

performed - the lack of memory coalescing can cause more memory transactions than 

requested to be triggered). Table 6 shows the profiling data gathered for lbTHRES = 32. As 

can be seen, all parallelization templates but dpar-naïve report an increased warp 

efficiency compared to the baseline code. This indicates a better utilization of the 

available GPU cores. In addition, by processing nodes with low outdegrees (< lbTHRES) 

and nodes with high outdegrees separately, these code templates improve the memory 

load and store efficiency. Finally, thanks to its use of shared memory, dbuf-shared 

improve the memory coalescing over dbuf-global, leading to better memory efficiency. 

To conclude, our proposed parallelization templates improve both GPU core utilization 

and memory access patterns.  
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(a) BC                              (b) PageRank                         (c) SpMV 

Figure 45: Speedup of load balancing code variants over basic thread-mapped 
implementation under different lbTHRES settings 

Results on BC, PageRank and SpMV:  Figure 45 shows the performance of BC, 

PageRank and SpMV using various lbTHRES settings. Again, we report the speedup 

achieved by our code variants over a thread-mapped implementation without load 

balancing. We make the following observations. 

First, similarly to SSSP, the speedup decreases as lbTHRES increases. This behavior is 

not surprising: the load balancing threshold determines the number of iterations of the 

outer loop that are processed in a block-mapped fashion, thus reducing the warp 

divergence during the thread-mapped phase and the resulting core underutilization. In 

other words, the lower the value of lbTHRES, the more load balancing will take place 

through block-based mapping. Table 7, which shows how the warp execution efficiency 

of dbuf-shared varies with lbTHRES, supports this observation. As can be seen, the lower 

the value of lbTHRES, the higher the warp efficiency (and, consequently, the GPU 

Table 6: Profiling data collected on SSSP (lbTHRES=32) 

Templates	
Metrics	

warp	efficiency	 gld	efficiency	 gst	efficiency	
baseline	 35.6%	 15.8%	 3.2%	

dual-queue	 74.9%	 79.1%	 4.8%	
dbuf-shared	 75.7%	 94.3%	 50.4%	
dbuf-global	 72.3%	 89.1%	 8.5%	
dpar-naïve	 25.3%	 45.5%	 16.3%	
dpar-opt	 70.2%	 63.2%	 10.9%	
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utilization). Note that the use of this parallelization template always improves the warp 

efficiency over the baseline code. We observed similar trends with all other 

parallelization templates but dpar-naïve.  

Second, dual-queue performs better than the other code variants only on BC. Dual-

queue suffers from the overhead of the initial creation of the two queues. While this 

overhead is limited for small datasets (e.g. Wiki-vote used by BC), its negative effect on 

performance becomes more obvious on large datasets (e.g. CiteSeer used by PageRank 

and SpMV).  

Third, on these applications dbuf-shared performs worse than dbuf-global for low 

values of lbTHRES and reports better or comparable performance for lbTHRES ≥ 128. This 

trend can be explained as follows. Recall that both parallelization templates use a delayed 

buffer to identify the large iterations of the outer loop that must be processed in the 

second, block-mapped phase. Since dbuf-global stores this buffer in global memory, the 

load gets redistributed across the thread-blocks during the second phase of the code (that 

is, the content of the delayed buffer is partitioned fairly across thread-blocks). However, 

this load redistribution across thread-blocks does not take place in the case of dbuf-

shared, which stores the buffer in shared memory and performs a single kernel call. The 

probability of load imbalance across thread-blocks is higher for low values of lbTHRES, 

Table 7: Warp execution efficiency (dbuf-shared) 

Applications	
lbTHRES	

32	 64	 256	 1024	 baseline	
SSSP	 75.6%	 71.9%	 45.3%	 37.2%	 35.6%	
BC	 75.8%	 56.7%	 17.1%	 10.8%	 10.3%	

PageRank	 91.5%	 87.0%	 63.4%	 50.9%	 50.8%	
SpMV	 94.4%	 82.3%	 71.5%	 51.5%	 51.0%	
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since in this case more work is added to the delayed buffer. However, when lbTHRES 

increases, less work is added to the delayed buffer, thus decreasing the probability of 

work imbalance across thread-blocks in the second phase of the code. When the amount 

of load balancing is low, dbuf-global suffers from the overhead of launching the second 

kernel. We used profiling data to support this observation. Specifically, we analyzed the 

warp occupancy of these code variants (that is, the ratio of the average active warps per 

active cycle to the maximum number of warps supported on a multiprocessor). For small 

values of lbTHRES, dbuf-global reports a higher warp occupancy compared to dbuf-shared 

(for example, for lbTHRES =32, the warp occupancy of dbuf-shared and dbuf-global is 18.3% 

and 26.9%, respectively), indicating a better hardware utilization. 

Finally, we observe that dpar-opt performs similarly to (or slightly worse than) dbuf-

shared. The nested kernel handling and launch overhead out shadows the benefit of 

dynamically remapping the work spawned within nested kernels to the GPU hardware. 

  

4.5 Workload Consolidation 

Since the Kepler architecture, Nvidia has introduced in its GPUs a new feature, called 

dynamic parallelism (DP), which makes it possible for GPU threads to dynamically 

spawn GPU kernels. Dynamic parallelism has also been recently added to the OpenCL 

2.0 standard. By supporting nested kernel invocations, this feature enables nested 

parallelism on GPU, and can facilitate dynamic load balancing, data-dependent execution 

and the parallelization of recursive algorithms. However, the effective use of DP is not a 

trivial matter. Basic implementations of adaptive kernels that spawn child kernels on a 

per-thread basis whenever new work is locally generated tend to perform a large number 
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of small kernel launches. It has been shown that, due to the runtime overhead associated 

with nested kernel calls, these implementations often lead to significantly degraded 

performances, even worse than those of flat parallel variants of the same algorithms [91-

93].  

In this work, we address this problem and propose a workload consolidation approach 

to improve the performance of applications relying on DP [121, 122]. Specifically, we 

consolidate into a single nested kernel the workload belonging to kernels that would be 

spawned by multiple GPU threads. We consider performing kernel consolidation at three 

granularities: warp-, block- and grid-level, whereby the consolidation involves the 

kernels launched by all the threads within a warp, all the threads within a block or the 

entire grid, respectively. We evaluate our consolidation mechanisms on applications 

exhibiting two computational patterns: parallel irregular loops and parallel recursion. 

 

4.5.1 Dynamic Parallelism 

Traditionally, only CPU threads can launch GPU kernels. Dynamic Parallelism, a feature 

added to OpenCL 2.0 standard and supported by Nvidia GPUs with compute capability 

3.5 and above, makes it possible for GPU threads to launch GPU kernels. Kernel 

launches can be nested and the deepest nesting level supported is currently 24. Kernels 

launched from different blocks or streams can execute concurrently, and up to 32 

concurrent kernels are currently allowed on Nvidia GPUs. A parent kernel will return 

only after all its child kernels have completed; however, the order of their execution is 

unknown unless these kernels are explicitly synchronized by a cudaDeviceSynchronize 

call. For each nesting level up to an explicit synchronization, parent kernels may be 
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temporarily swapped out to free up GPU resources and allow the execution of their child 

kernels. Pending kernels due to either unresolved dependencies or lack of available 

hardware resources are fed to a temporary buffer. Global memory data are visible to both 

parent and child kernels, while shared and local memory variables are visible only within 

the kernel where they are declared.  

 

4.5.2 Application Characterization 

We consider two computational patterns that can benefit from DP: irregular loops and 

parallel recursion. 

Irregular Loops - Irregular loops are characterized by an uneven work distribution 

across loop iterations. For example, nested loops where the number of iterations of inner 

loops varies across the iterations of outer loops are irregular. These loops can be found in 

many applications, such as sparse matrix operations and graph traversal algorithms that 

rely on the commonly used Compressed Sparse Row representation of matrix and graph 

data structures [75]. The degree of parallelism within irregular loops is typically data 

dependent [123-125] and known only at runtime. Due to their nature, the flat 

parallelization of these loops can cause work imbalance across threads, possibly leading 

to GPU underutilization and limited performance. For example, if loop iterations are 

distributed equally to threads, the unbalanced work distribution across iterations (and 

threads) will lead to warp divergence. Irregular loops can benefit from the use of DP for 

load balancing [126]. Specifically, overloaded threads can spawn child kernels and assign 

(part of) their work to them, thus limiting warp divergence.  
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Parallel recursion - Nested parallelism also arises in the presence of parallel 

recursion. While some recursive algorithms can be made iterative through various code 

transformation techniques (e.g. tail-recursion elimination, auto-ropes and other flattening 

techniques [127-129]) and subsequently undergo flat parallelization, recursion cannot be 

always eliminated. Before the introduction of DP on GPU, parallel recursion required 

both CPU and GPU intervention. Specifically, the CPU would control the flow of 

recursion and initiate the recursive calls, whose execution could then be offloaded to the 

GPU in the form of parallel kernels. This approach requires one kernel launch for every 

recursive call and incurs high CPU-GPU communication overhead. By enabling kernel 

launches from GPU threads, DP allows the recursive control flow to reside directly on the 

GPU. This, in turn, allows reducing the CPU-GPU communication and the kernel launch 

overhead. The most natural way to implement a parallel recursive function on GPU is by 

directly porting to this platform a CPU parallelization of that function and allowing each 

GPU thread to spawn a recursive kernel whenever the CPU code would perform a 

recursive call. As we will show, GPU implementations following this pattern often 

perform a large number of small kernel invocations, leading to substantial kernel launch 

overhead and hardware underutilization. Our proposed consolidation schemes target this 

problem. 

 

4.5.3 Motivation 

In this section, we first present the basic use cases of dynamic parallelism. Then we show 

how inefficient the basic implementation is and explain why using DP can lead to 
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performance degradation. These motivate us to propose our compiler-assisted workload 

consolidation solution. 

A. Basic DP-Code Template  

Figure 46(a) shows a basic code template for parallel kernels that use DP [93]. As in all 

GPU kernels, each thread (or thread-block) is assigned some data to process (or work 

items). Each thread (thread-block) initially performs some work (prework) on the data 

assigned to it. Then, depending on the outcome of a condition, the thread (thread-block) 

either spawns a child kernel to execute some more work, or performs that work on its 

own. Finally, the thread (thread-block) may optionally perform additional work 

(postwork). Note that both irregular loops and recursive algorithms fit in this code 

template. The only difference between these two computational patterns is the following: 

in irregular loops parent and child kernels are different, and the child kernel is generally 

used for load balancing purposes; in parallel recursion, parent and child kernels are 

identical. Figures 46(b) and (c) illustrate this basic code template on two algorithms: one 

with an irregular loop (single source shortest path), and the other with parallel recursion 

(recursive tree traversal). 
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(a) Basic code template for kernels using dynamic parallelism 

 
(b) Basic implementation of SSP with dynamic parallelism 

 
(c) Basic code of tree traversal with dynamic parallelism 

Figure 46: Basic-dp code template and sample codes 

In the SSSP kernel, each 

GPU thread processes the 

neighbors of an assigned node. 

Because the number of neighbors 

may vary from node to node, the 

workload may be unevenly 

distributed across threads. To 

address this problem, each thread 

checks whether the amount of 

work assigned to it 

(neighbors.size) is larger than a 

given threshold. If this is the case, 

it spawns a child kernel and 

delegates the work to it; 

otherwise it performs the work on its own. Because the GPU hardware schedules 

different kernels independently, this mechanism allows redistributing the work to the 

GPU resources, potentially leading to better GPU utilization. 

In the tree traversal kernel, each thread is assigned a child of a given node. Initially, 

the thread checks whether child has no children. In this (base) case, the thread performs 

leafnode_work; otherwise, it spawns a kernel recursively and delegates to it the 

processing of its assigned node.  

The examples above illustrate “basic” implementations of irregular loops and parallel 

recursion that rely on DP. For irregular loops, DP is used to redistribute unbalanced work: 
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in this case, the thread (thread-block) executing an iteration of the loop invokes a nested 

kernel to offload the excess work to it. In case of parallel recursion, this basic code 

variant results from simply porting the CPU implementation of a parallel recursive 

function to GPU. Although more complex implementations are possible, these basic code 

variants require minimal effort from the programmer. However, as discussed below, this 

basic use of DP can incur significant overhead and lead to poor performance. 

B. Limitations of Dynamic Parallelism 

The effectiveness of DP is affected by different factors: sources of runtime overhead and 

GPU utilization. Below, we detail each of these aspects. 

Kernel Launch Overhead - To launch a kernel, the CUDA driver and runtime need 

to parse the parameters list, buffer the values of these parameters, and dispatch the kernel. 

These steps have an associated overhead. This overhead is negligible when the number of 

nested kernels is small, but can accumulate and become significant in the presence of 

numerous kernel launches [92, 93].  

Kernel Buffering Overhead - Kernels waiting to execute are inserted in a pending 

buffer. Since CUDA 6, this buffer consists of two pools: a fixed-size pool and a variable-

size virtualized pool. The fixed-size pool incurs lower management overhead but by 

default can only accommodate a maximum of 2048 pending kernels. When it becomes 

full, pending kernels are fed to the virtual pool, which incurs extra management overhead. 

Applications spawning a large number of nested kernels can exhaust the fixed-size pool 

and experience performance degradation due to the virtual pool’s overhead. It is possible 

to increase the capacity of the fixed-size pool through the CUDA function 

cudaDeviceSetLimit. However, this will result in a higher global memory reservation. 
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Synchronization Overhead - If there exists explicit synchronization between parent 

and child kernels, in order to free resources for the execution of child kernels, parent 

kernels will be swapped out into global memory. For each level up to the maximum level 

where they synchronize, up to 150 MB memory may be reserved for swapping. These 

extra memory transactions are source of additional overhead.  

Effect of the kernel configuration – It is well known that the full use of the GPU 

hardware requires massive multithreading. CUDA currently allows up to 32 kernels to 

execute concurrently on a GPU. However, if configured to use small thread 

configurations, even 32 concurrent kernels may underutilize the GPU. Meanwhile, there 

is a limit on the maximum number of blocks that can be concurrently active. Thus, 

configuring nested kernels with a large number of blocks will limit the number of kernels 

executing in parallel. As a result, it is important for programmers to carefully select 

thread configurations that allow both good device utilization and desired level of 

concurrency. 

The kernel launch, buffering and synchronization overheads can be reduced by 

limiting the number of kernel launches performed. In addition, to avoid GPU 

underutilization, it is important to avoid small kernel configurations that would lead to 

low occupancy even in the presence of kernel concurrency. In general, DP codes 

resulting in a large number of small kernel invocations tend to experience poor 

performance. In our previous work [92], we have shown that, due to the large number of 

small kernel calls they invoke, DP codes following the basic template in Figure 1 can 

underperform flat implementations of the same algorithms by up to a factor of  1000. 
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4.5.4 Methodology 

In this section, we present our workload consolidation mechanism designed to avoid the 

performance degradation associated with the basic use of dynamic parallelism described 

in Chapter 4.5.3. 

A. Workload Consolidation 

The idea at the basis of workload consolidation is fairly simple: by aggregating kernels 

spawned by different threads into a single or few consolidated kernels, it is possible both 

to decrease the number of nested kernel invocations, thus limiting DP overhead, and to 

increase the degree of multithreading of the nested kernels invoked, thus increasing their 

GPU utilization. In order to perform workload consolidation, we buffer the work 

associated to the kernels to be consolidated, and we defer the handling of this aggregated 

work to the launch of one or more child kernels. Since in the SIMT model all threads 

execute the same instructions on different data, in order for a thread to buffer work, it will 

be sufficient for the thread to buffer the pointer(s) or index(es) to the data to be processed. 

This method requires barrier synchronization between the buffer insertions and the 

consolidated kernel launches. 

This high level idea is illustrated in Figure 47. In the figure, the numbers in the array 

indicate the amount of work assigned to each thread, and the numbers in red indicate 

large workloads that need to be redistributed through the launch of nested kernels. In 

Figure 47(a), two child kernels (K1 and K2) are invoked: one to process 326 and the other 

to process 234 work items. Workload consolidation, illustrated in Figure 47(b), first 

inserts the work associated to K1 and K2 into a consolidation buffer. It then launches a 
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(a) Basic implementation of dynamic parallelism 

     

    (b) Dynamic parallelism with workload consolidation 
Figure 47: Workload consolidation – illustration 

single child kernel (Kcons) to process all the work in the buffer.  Kcons will have a larger 

thread configuration than K1 and K2. 

B. Consolidation Granularity 

CUDA programming model has four levels of parallelism: thread, warp, block and grid. 

While threads, blocks and grids are exposed to programmers, warps are implicitly defined 

as groups of 32 threads that execute in lockstep and have contiguous identifiers. In the 

DP execution model, kernel launches are performed by threads. We consider three 

consolidation granularities: warp-, block- and grid-level. 
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Warp-level consolidation uses a buffer to aggregate work from the threads within a 

warp and launches one kernel per warp. This consolidation method can reduce the 

number of kernel invocations at most by a factor of 32. The benefit of warp-level 

consolidation is that the synchronization overhead is minimized because no additional 

synchronization is required beside the implicit one due to SIMD execution. 

Block-level consolidation aggregates work associated to threads within a block and 

launches a kernel per block. This method can reduce the number of kernel invocations 

beyond what allowed by warp-level consolidation. However, this consolidation scheme 

requires a block-level synchronization (__syncthreads) after the buffer insertions, leading 

to higher synchronization overhead than the warp-level variant.  

Grid-level consolidation aggregates work from all threads in a grid and then 

launches a single child kernel. Since CUDA does not provide global synchronization 

within a kernel, this consolidation method requires a customized barrier synchronization 

(we will discuss this aspect later). Because of this, grid-level consolidation suffers from 

the highest synchronization overhead. 

C. Kernel Transformations 

The overall kernel transformation flow is shown in Figure 48. The input is DP-based 

CUDA code annotated with the described pragma directive, and the output is the 

consolidated CUDA code. The kernel transformation process consists of two steps: (1) 

child kernel and (2) parent kernel transformation. For irregular loops, parent and child 

kernels are different, and the two code transformations are applied separately to each. For 

recursive computations, parent and child kernels are the same, and the two transformation 

steps are applied to the single input kernel sequentially. 
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Figure 48: Kernel transformation flow 

Child kernel transformation – This phase transforms the input child kernel into a 

consolidated child kernel. The new kernel fetches work from the consolidation buffer and 

processes that work according to the code in the input child kernel. Whenever possible, 

we generate moldable kernels [130] (that is, kernels with tunable kernel configuration). 

The way the original code is mapped to threads and blocks in the consolidated kernel 
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depends on the configuration of the input child kernel. Specifically, we identify the 

following cases: 

Solo thread: The input child kernel consists of a single block and a single thread (e.g. 

quick sort in CUDA SDK). In the consolidated child kernel, each thread will fetch a work 

item (if available) from the consolidation buffer, and it will process that work item 

exactly as the original kernel does. To make the kernel moldable, we allow threads to 

fetch work from the buffer repeatedly until the buffer becomes empty.  

Solo block: The input child kernel consists of a single block with multiple threads, 

and these threads operate cooperatively. In the consolidated child kernel, each block will 

fetch a work item (if available) from the consolidation buffer, and the threads within the 

block will cooperatively process that work item as in the original kernel. To make the 

kernel moldable, we allow blocks to fetch work from the buffer repeatedly until the 

buffer becomes empty. If the original child kernel is moldable, the number of threads per 

block in the generated child kernel will also be tunable; else, the two kernels will have 

the same block size. 

Multi-block and multi-thread: When the original child kernel uses multiple blocks and 

threads per block, each work item is processed by all threads cooperatively. In this case, 

in the transformed kernel we use a for-loop to wrap the code of the original child kernel. 

The generated kernel will extract work from the buffer iteratively, and all threads will 

process cooperatively each work item. In this case, the transformed kernel is moldable 

only if the original kernel is such.  

Parent kernel transformation – We divide the parent kernel into three sections: 

prework, child kernel launch, and postwork (Figure 46(a)). The prework and postwork 
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represent the processing done before and after the child kernel launch, respectively. Many 

kernels do not include any postwork. The code transformations required in the parent 

kernel are: (1) buffer allocation (before prework); (2) prework insertion; (3) replacement 

of the child kernel launch with buffer insertions; (4) insertion of the required barrier 

synchronization primitive; and (5) postwork transformation. As shown in Figure 47, steps 

(1)-(3) are fairly mechanic; however, steps (4) and (5) require some consideration.    

If the original kernel includes barrier synchronization between the child kernel launch 

and the postwork, such synchronization must be preserved in the consolidated parent 

kernel. For warp-level consolidation, this problem is automatically solved by the implicit 

barrier synchronization due to the lockstep execution of the threads within a warp. For 

block-level consolidation, CUDA provides a block-level barrier synchronization 

primitive (__syncthreads). Grid-level consolidation requires more thought. First, the only 

global barrier synchronization provided by CUDA is the implicit one at the end of a 

kernel launch. However, using this mechanism would require splitting the parent kernel 

into two: a kernel handling the prework and the child kernel launch, and a kernel 

handling the postwork. In addition, CPU intervention would be required to invoke the 

postwork-kernel. This would be problematic in case of recursion, as it would require 

returning the control to the CPU after each child kernel launch, and to have calls to the 

postwork-kernel stacked on CPU. In other words, the CPU would acquire full recursion 

control, leading to the overheads discussed in Chapter 4.5.3. To address this problem, we 

implement a custom global synchronization mechanism that can be invoked from the 

GPU (see Chapter 4.5.5.E). Second, a global synchronization may cause a deadlock when 

active blocks on GPU are suspended at the global barrier while pending blocks are 
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waiting for active blocks to finish. To address this problem, we consolidate the postwork 

into a single kernel. The last block to complete its buffer insertions will then launch the 

consolidated child kernel, wait for its completion and then launch the consolidated 

postwork kernel. The other blocks will simply exit after completing their buffer insertions. 

Finally, the required barrier synchronization between the child kernel launch and the 

postwork is handled by inserting a cudaDeviceSynchronize call between the invocations 

of these two consolidated kernels. Dependencies between the prework and the postwork 

are handled by duplicating in the postwork the relevant portions of prework. 

D. Compiler Directive Design  

In order to direct the code transformations performed by the compiler, we provide a 

single directive that can be applied to generic DP-based code following the template in 

Figure 46. This directive allows identifying the child kernels to be consolidated and the 

work to be buffered.  The grammar of the directive is: ‘#pragma dp [clause+]’. Table 8 

lists the clauses available, which specify the consolidation granularity, the type and size 

of the consolidation buffer, the indexes or pointers to the work items to be buffered and 

Table 8: Clauses of our workload consolidation compiler directive 

Clause Argument Description Optional 

consldt granularity: warp, block, grid Workload consolidation granularity No 

buffer 

type: default, halloc, custom Buffer allocation mechanism 

Yes perBufferSize: integer or variable name Buffer size 

totalSize: integer Total size of all buffers 

work varlist: list of indexes or pointers to work 
List of variables to be stored in 

buffer 
No 

threads thread number: integer 
Number of thread/block for 

consolidated kernel 
Yes 

blocks block number: integer 
Number of blocks for consolidated 

kernel 
Yes 
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the configuration of the consolidated kernel. Some of these clauses are optional and 

programmers can use them for further optimization and performance tuning. For instance, 

developers can optionally specify the configuration of the consolidation buffers and the 

one of the child kernels. We provide more details on these options in Chapter 4.5.4.E.  

Figure 49(a) illustrates the use of our proposed compiler directive to annotate the 

original CUDA code. In this case, block-level consolidation is selected, the buffer can 

have at most 256 elements and is instantiated with the default CUDA allocator, and 

variable curr is buffered. The generated code is shown in Figure 49(b) (in this particular 

case, the synchronization primitive in use is __synchthread). 

E. Implementation Details 

This section describes the implementation details of our source-to-source compiler, 

which converts annotated CUDA code into consolidated GPU kernels. Our compiler is 

implemented using the ROSE compiler infrastructure [131].  

Rose compiler infrastructure – ROSE (version 0.96.a) incorporates Edison Design 

Group (EDG) Frontend 4.0 that supports the parsing of CUDA, C and C++ code. We use 

its parser building APIs to implement the parser for the pragma directive. The pragma 

information is linked to the abstract syntax tree (AST). Based on the directive 

information and the AST, we customize the traversal and transformation functions to 

generate a new AST, which is then fed to and unparsed by the backend of ROSE to 

generate the consolidated parent and child kernels.  

Consolidation Buffers – The design of the consolidation buffers involves several 

considerations, some of them leading to the need for the directive clauses listed in Table I.  
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(a) Annotated CUDA code (parent kernel) 

 
(b) Generated CUDA code (parent kernel) 

Figure 49: Example of use of our workload 
consolidation compiler directive  

Memory selection: The 

consolidation buffer can be 

either implemented in global or 

in shared memory. Global 

memory provides slower access 

but is visible to both parent and 

child kernels. Conversely, 

shared memory is faster but 

private to each block (and thus 

not visible within nested 

kernels). While parent kernels 

could fill temporary buffers in shared memory and then copy them into global memory to 

allow access by child kernels, the limited size of shared memory makes this solution not 

scalable. As a result, we store the consolidation buffers solely in global memory.  

Dynamic allocation method: For the allocation of the consolidation buffers, we allow 

three alternatives: (1) the default allocator provided by CUDA; (2) the open-source halloc 

memory allocator for GPU [132]; and (3) a customized allocator that leverages a pre-

allocated memory pool. 

 Buffer size for customized allocator: Due to the irregular nature of nested parallelism, 

the buffers required by different consolidated kernels may vary in size. When using the 

pre-allocated memory pool, the programmer needs to set both its size and the size of the 

portion of the memory pool allocated to each buffer (recall that in warp/block-level 

consolidation every warp/block uses a consolidation buffer). The size of the pre-allocated 
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memory pool (500MB by default) can be specified using the totalSize argument in the 

pragma directive. The per-buffer size (perBufferSize) is predicted as: 

totalThread * totalBuffVar * const 

where totalThread is the total number of threads from which we consolidate the child 

kernels, totalBuffVar is the number of buffered variables (indexes or pointers) per work 

item; and const is a constant (default value: 4) that estimates the number of work items 

assigned to a single thread. We have observed that, in most cases, the perBufferSize can 

be determined from a runtime variable that indicates a property of the current work item. 

For instance, for the tree applications in our benchmarks, the buffer size can be derived 

from the variable that indicates the number of children of a given node. If the user cannot 

provide such variable, a constant may also be specified to its best estimation. Our 

customized allocator can utilize the information from the #pragma to allocate properly 

sized buffers from the pre-allocated global memory pool for different consolidation 

granularities. Notice that for grid level consolidation, only one buffer is required for each 

grid: in this case, the grid can directly utilize the whole memory pool and the 

perBufferSize is ignored. 

Global Barrier Synchronization on GPU – The global barrier synchronization is 

implemented using a counter whose value is initialized to the number of blocks executed. 

When a block reaches the barrier, the first thread in the block decrements the counter by 

one atomically. A counter decrement to zero indicates that the last block has reached the 

barrier.  

Kernel Configuration Handling – When launching kernel calls, it is common 

wisdom to select a configuration that achieves high device occupancy, which is defined 
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as the ratio of the number of active warps to the number of maximum active warps that 

the device can host. Although higher occupancy does not always guarantee higher 

performance, it usually produces a good enough result that can be further tuned. The use 

of the CUDA Occupancy Calculator allows finding a kernel configuration (B, T) that 

maximizes the occupancy for a single kernel. However, concurrent kernels must share the 

GPU resources, and thus such configuration will not be optimal for concurrent kernels 

initiated with DP [130]. To allow multiple kernels to be concurrently active on GPU, 

programmers need to downgrade the configuration they obtain by using the Occupancy 

Calculator. We refer to Kernel Concurrency (KC) as the maximum number of 

concurrently active kernels. The highest KC supported by CUDA as of compute 

capability 3.5 is 32. Due to the hardware resource limitations, a concurrency of X may be 

achieved by downgrading the configuration (B, T) to ([B/X], T). We name such 

configuration KC_X. 

For grid-level consolidation, at any given time there is only one active consolidated 

kernel that processes all the work from all threads in the parent kernel. Hence, we expect 

the best configuration to be the one that maximizes the device occupancy for a single 

kernel. Thus, we use KC_1 as the default kernel configuration. 

For block-level consolidation, each block in the parent kernel will spawn a 

consolidated kernel that will handle a smaller amount of work collected from a block in 

the parent kernel. We decide to downgrade the configuration by a factor of 16 and use 

KC_16 as the default configuration.     

For warp-level consolidation, each warp in the parent kernel will spawn a 

consolidated kernel that handles an even smaller amount of work collected from a warp, 
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and a maximum concurrency of 32 can be easily achieved. Thus, we use KC_32 as the 

default kernel configuration. 

Because users may need to fine-tune the configuration for their applications to 

achieve the best performance, we also provide #pragma clauses that allow for user-

specified kernel configurations. 

 

4.6.4 Experimental Evaluation 

In this section, we evaluate our proposed workload consolidation methods on various 

applications and datasets. Specifically, we compare the generated consolidated kernels 

with the original, basic DP kernels (basic-dp code template in Figure 46) and with flat 

GPU implementations of the considered algorithms (denoted by np-dp). In all the figures, 

warp-level, block-level and grid-level refer to the consolidation granularity considered. 

We first evaluate the performance of using different memory allocators to implement 

the consolidation buffers. We then evaluate the effectiveness of our method to select the 

kernel configuration of nested kernels by comparing the resulting performance with the 

best performance achieved using the optimal kernel configuration found by exhaustive 

search. We then study the overall performance of the different consolidated kernels using 

the optimal allocator and kernel configuration. Finally, we use profiling to study the 

effect of our consolidation schemes on hardware utilization.   

Hardware and Software Setup: We run all experiments on a workstation powered 

by two 6-core Xeon E5-2620 CPUs and a NVIDIA K20c GPU. We use CUDA runtime 

and compiler version 7.0. We use Nvidia Visual Profiler to collect the profiling data. We 

average the results of the experiments over multiple runs.  
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Benchmark implementations: The benchmarks used in our evaluations are Single 

Source Shortest Path (SSSP), Sparse Matrix Vector Multiplication (SpMV), PageRank 

(PR), Graph Coloring (GC), Recursive Breadth-first Search (BFS-Rec), Tree Heights 

(TH) and Tree Descendants (TD). Specifically, we consider the basic-dp and no-dp/flat 

implementations from [75, 92, 117, 118]. We use basic-dp implementations as baseline, 

and report the performance of flat kernels (no-dp) and consolidated kernels with different 

consolidation granularities. Since flat kernels achieve better performance than CPU 

implementations, we do not report results of CPU implementations. 

Datasets: For applications based on graphs and sparse matrices, the datasets used are 

CiteSeer (used in SSSP, SPMV, PG) and Kron_log16 (used in GC, BFS-Rec), both from 

the DIMACS challenges [133]. CiteSeer is a paper citation network with about 434 

thousand nodes, 16 million edges and a node outdegree that varies from 1 to 1,199 across 

the graph (with an average value of 73.9). Kron_log16 has 65 thousand nodes and 5 

million edges, with a node outdegree that varies from 8 to 36,114. For the trees, we use 

datasets from [92]: dataset1 is a depth-5 tree whose nodes have a number of children 

varying from 128 to 256 and only half of the non-leaf nodes have children; dataset2 is a 

depth-5 tree whose nodes have a number of children varying from 32 to 128 and all non-

leaf nodes have children. 

A. Implementation of the Consolidation Buffers 

As explained in Chapter 4.5.4.E, the consolidation buffers can be implemented using 

three allocators: the default CUDA malloc allocator, the open-source high performance 

Halloc allocator [132] and our customized allocator. Figure 50 shows the performance 

results of workload consolidation on SSSP using these three allocators. In the figure, 
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Figure 50: Performance of different buffer implementations (SSSP) 

default refers to the CUDA malloc/free primitives, halloc to the Halloc allocator, and 

pre-alloc to our customized allocator. We can see that the default and halloc allocators 

achieve similar results in all cases. For block-level consolidation, the performance of both 

default and halloc are worse than that of the flat GPU code (no-dp), while pre-alloc 

achieves roughly 3x speedup over no-dp. This is due to the higher overhead introduced 

by default and halloc on every allocation operation. This overhead also contributes to a 

5.7x performance gap between pre-alloc and default/halloc in case of block-level 

consolidation. The performance degradation of default and halloc is even worse (20x 

slowdown) for warp-level consolidated code, which requires more frequent buffer 

allocation operations. Since grid-level consolidation only requires a single buffer, in this 

case there is no obvious performance difference among these three allocators. In the 

remaining experiments, we only show the results reported using the better performing 

pre-alloc allocator.  
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Figure 51: Performance of different kernel configurations (TD) 

B. Selection of the Kernel Configuration  

In Chapter 4.5.4.E we discuss three configurations for consolidated kernels: KC_1, 

KC_16 and KC_32. These configurations allow the consolidated kernels to achieve 

concurrency levels (maximum number of concurrently active kernels) of 1, 16 and 32, 

respectively. We compare these configurations with two additional configurations 

schemes, 1-1 mapping and exhaustive search. The 1-1 mapping configuration indicates 

that the kernel is configured to have as many blocks (or threads, in the case of thread-

mapped child kernels) as the number of items in the buffer. The exhaustive search 

configuration is the best configuration we find from exhaustively searching the 

configuration space [134]. In Figure 6 we report the results on tree descendants for all 

considered consolidation granularities over two datasets. 

We first compare the three proposed configurations. KC_1 works best for grid-level 

consolidation; KC_16 works best for block-level consolidation; and KC_32 works best 

for warp-level consolidation. This meets our expectations and is coherent with the 

analysis presented in Chapter 4.5.4.E. We then compare KC_1 for grid-level, KC_16 for 
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block-level and KC_32 for warp-level consolidation with 1-1 mapping. As can be seen, 

our solution performs much better, especially for block- and warp-level consolidation. 

This is because the varying block size of 1-1 mapping lowers the Kernel Concurrency 

and increases the size of the pending queue, leading to higher overhead and degraded 

performance. At last, we compare our scheme with the best configuration found by 

exhaustive search. We observe that the configurations selected by our method (KC_1 for 

grid-level, KC_16 for block-level and KC_32 for warp-level consolidation) achieve on 

average 97% of the performance of the optimal configuration found by exhaustive search. 

The same experiments conducted on the other benchmarks using various datasets 

report similar results. In conclusion, our configuration selection method for nested 

kernels is effective and leads to nearly optimal performance. In all the remaining 

experiments, we use KC_1, KC_16 and KC_32 configurations for kernels consolidated at 

the grid-level, block-level and warp-level granularities, respectively. 

C. Overall Performance 

Figure 52 presents the overall speedup of kernels consolidated at different granularities 

over basic-dp. The chart also reports the speedup achieved by flat parallel code (no-dp) 

over the baseline. As can be seen, the basic-dp implementation suffers from severe 

performance degradation due to the significant kernel management overhead and the 

limited GPU utilization. Even compared with the flat GPU kernels, basic-dp reports 

slowdown factors from 80 to 1100. Warp-level consolidation improves the performance 

of basic-dp on average by a factor of 1000x but in some cases is not significantly better 

than the flat GPU kernel (no-dp). Block-level consolidation outperforms warp-level 

consolidation, and grid-level consolidation achieves the best performance across all 
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Figure 52: Overall speedup over basic dynamic parallelism 

benchmarks. Even if warp-level consolidation has the benefit of very low synchronization 

overhead, when compared to block- and grid-level code, it suffers from the more 

significant overhead introduced by the additional child kernel launches. Grid-level 

consolidation reduces the number of child kernel launches dramatically, and thus 

achieves the best performance despite its extra synchronization overhead. On average, 

warp-level, block-level and grid-level consolidation outperform basic-dp by a factor of 

999, 1357 and 1459, respectively, and no-dp by a factor of 2.18, 3.26 and 3.78, 

respectively.  

D. Profiling Results 

In this section, we analyze the improvements in hardware utilization achieved by 

workload consolidations.  

Figure 53 shows the overall warp execution efficiency, which is defined in the CUDA 

documentation [135] as “the ratio of the average active threads per warp to the maximum 

number threads per warp”. For each application, we show the results reported by the 

basic-dp implementation and the three considered workload consolidation schemes. On 
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Figure 53: Warp execution efficiency across benchmarks 

top of the bars we report the number of child kernel invocations performed in each case. 

First, we can observe that the proposed consolidation methods reduce the number of 

kernel invocations to 0.07%-14.48% of the ones performed by the corresponding basic-

dp code. For instance, in PageRank, consolidation reduces the number of kernel 

invocations from 6.7 million (basic-dp) to 380 thousand (warp-level), 113 thousand 

(block-level) and 40 (grid-level). Second, average warp execution efficiencies are 

improved from 33.2% (basic-dp) to 69.3% (warp-level), 75% (block-level) and 83.1% 

(grid-level). The warp execution efficiency measured by Nvidia profiler includes not only 

parent and child kernels execution, but also child kernel launch overhead. Child kernel 

launches will take more clock cycles than buffer insertion operations, decreasing the 

warp efficiency. Consolidation replaces kernel launches with buffer insertions; as a result, 

it reduces the overhead of warp divergence and leads to improve overall warp efficiency.  
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Figure 54: SMX occupancy (achieved hardware utilization) 

Figure 54 shows the achieved streaming multiprocessor occupancy, which measures 

the ratio of average active warps over maximum warps supported per streaming 

multiprocessor [135]. On average, workload consolidation improves this metric from 

27.9% (basic-dp) to 39.3% (warp-level), 60.3% (block-level), and 82.9% (grid-level). 

Recall that in basic-dp each thread launches a “small” kernel. Hence, the GPU device is 

filled with many such “small” concurrent kernels. As mentioned in Chapter 3.5.3.B, there 

is a hardware limitation on the maximum number of concurrent kernels that a GPU can 

accommodate. On K20c, this limit is 32. Therefore, in the basic-dp case, thirty-two 

“small” concurrent kernels will underutilize the hardware. Workload consolidation, on 

the other hand, increases the average child kernel size and improves resource utilization.  
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Figure 55: DRAM transactions ratio over basic dynamic parallelism 

To measure the efficiency of memory accesses, we monitor the numbers of DRAM 

transactions (read+write) performed by each kernel. Figure 55 shows the ratio between 

the number of DRAM transactions performed by each consolidated kernel and those 

performed by the basic-dp code. In all cases, the total DRAM transactions are reduced. 

Specifically, warp-level, block-level and grid-level consolidation lead to 60%, 34% and 

36% of the original transactions, respectively. This reduction in memory transactions can 

be motivated as follows: first, the consolidation increases the average child kernel size, 

thus leading to better caching behavior and memory bandwidth utilization; second, a 

decrease in the number of nested kernels will lower the chance of swapping parent 

kernels out, therefore reducing the memory transaction overhead associated to kernel 

swapping; third, the decreased number of nested kernels reduces the use of the virtualized 

pool within the pending queue, lowering the overhead of virtual pool management. It can 

also be noticed that, for some benchmarks (e.g. SpMV), block-level achieves better 

memory utilization than grid-level consolidation. This is due to the overhead associated 

to our global synchronization mechanism. 
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Chapter 5 Deep Neural Network on CPU-GPU 

Deep learning is a branch of machine learning that uses a layered architecture of data 

processing stages for pattern recognition. Due to its effectiveness in many applications, 

deep learning has gained popularity in both academia and industry. Convolutional neural 

networks (CNNs) are the most successful models for deep learning, and they have been 

used in various domains, including computer vision [136] and speech recognition [137]. 

 

5.1 Related Work 

With the emergence of powerful GPUs and the availability of large data sets for training, 

we have witnessed a significant improvement of deep CNNs in terms of training time and 

accuracy. The Visual Geometry Group (VGG) at University of Oxford has designed a 16- 

and a 19-layer model with a 7.4% and a 7.3% top-5 error rate, respectively [138]. 

Microsoft has recently proposed a NN model with 152 layers – 8x deeper than the VGG 

nets – reporting a 3.57 % error rate [139]. This fast development has led to the 

proliferation of applications based on NNs. Examples of emerging applications based on 

NNs include: auto tagging [140], the estimation of a person’s pose [141], and the 

generation of a descriptive sentence from an image [142]. While previous work has 

focused on performance, our paper focuses on evaluating the energy efficiency of deep 

neural networks on CPUs and GPUs. 

Although the mainstream approach for training deep convolutional neural networks is 

using CPUs and GPUs, researchers have recently started to explore the use of other 

architectures and devices, including FPGA [143, 144], RRAM [145], neuromorphic 
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processors [146] and Tetra-Parallel architecture [147]. These hardware implementations 

are specifically tailored to convolutional neural networks and yield impressive results in 

terms of performance and energy efficiency. However, these hardware innovations are 

still at an early stage and it is urgent to understand the power and energy behavior of 

commonly used neural network frameworks on CPU and GPU – the main goal of our 

paper. 

In spite of the advancement in the development of deeper and more complicated 

neural network structures, research on investigating the energy behavior of different 

neural networks and software frameworks is still in its infancy. In its white paper [148], 

Nvidia provides limited power and energy consumption results for CNN inference on two 

frameworks. Our paper distinguishes itself by providing a comprehensive study on the 

energy-efficiency of deep neural network training that covers different frameworks, 

different platforms and different hardware settings. 

 

5.2 Energy Efficiency 

5.2.1 Motivation 

In recent years convolutional neural networks (CNNs) have been successfully applied to 

various applications that are appropriate for deep learning, from image and video 

processing to speech recognition. The advancements in both hardware (e.g. more 

powerful GPUs) and software (e.g. deep learning models, open-source frameworks and 

supporting libraries) have significantly improved the accuracy and training time of CNNs. 

It is now possible to train large and complex neural networks in reasonable time on 
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relatively inexpensive hardware. This has led to the rapid growth of neural network-based 

deep learning algorithms.    

However, the race for speed and accuracy comes at the cost of energy consumption, 

an aspect that has been overlooked in previous work. While the classification accuracy 

has traditionally been considered as the primary metric of success for image and video 

recognition applications, the community has recently recognized the need for deep neural 

network implementations that are both accurate and energy efficient. As a result, in 2015 

IEEE Rebooting Computing has launched the “Low-Power Image Recognition Challenge” 

(LPIRC), an initiative aimed to promote the design of energy efficient image 

classification methods.  Currently, research in designing energy efficient CNNs is still in 

its infancy. The knowledge on the power consumption behaviors of different CNNs and 

training frameworks is very limited. With the size of data sets grows exponentially, the 

energy demand for training such data sets increases rapidly. It is highly desirable to 

design deep learning frameworks and algorithms that are both accurate and energy 

efficient. 

Modern GPUs comprise hundreds to thousands of compute cores and can provide 

high computational power and throughput. As a result, GPU computing has become the 

de-facto approach for CNNs training [149]. Meanwhile, Intel has recently released the 

Intel Deep Learning Framework (IDLF) [150], which provides high performance CNNs 

training on CPU platforms. While Nvidia claims that its GPU framework reports a 11x-

14x speedup over the CPU version of Caffe on an Intel IvyBridge processor [151],  S. 

Hadjis et al. [152] point out that Nvidia’s comparison is based on an unoptimized CPU 

baseline, and they introduce CPU optimizations reducing the GPU-CPU performance gap 
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to only 1.86x. None of these analyses, however, consider the energy efficiency of training 

the neural networks.  

In this work, we conduct a comprehensive study on the power behavior and energy 

efficiency of CNNs on both CPUs and GPUs [153]. We evaluate popular deep learning 

frameworks using energy-related metrics and, for each of these frameworks, we provide 

accurate power measurements using a set of carefully selected networks and layers. We 

conduct our evaluation on different processor architectures (i.e., Intel Xeon CPUs, Nvidia 

Kepler and Maxwell GPUs) and explore the effect of a variety of hardware settings to 

facilitate the design of energy efficient deep learning solutions.  

 

5.2.2 Methodology 

A. Introduction to CNN Frameworks 

In order to be practically applicable, CNNs require software frameworks that allow high 

performance training of large-scale networks including millions of parameters. Popular 

open-source CNN frameworks include: Caffe [154], Torch [155], TensorFlow [156], 

MXNet [157], Nervana [158] and CaffeConTroll [152]. All these frameworks except 

CaffeConTroll offer both CPU- and GPU-support. In all cases, GPU support is based on 

the Nvidia cuDNN library [159]. In addition to the cuDNN-based implementation, Caffe 

and Torch include custom GPU implementations of convolutional layers, pooling layers 

and activation functions. 

B. Experimental Setup 

Benchmark Suite: In our experimental evaluation we use Convnet [160], an open-source 

benchmark that includes most publicly accessible implementations of CNNs. This 
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benchmark is designed to measure the execution time of the forward and backward 

propagation of different layers/networks. To obtain accurate power measurements, we 

apply minor modifications (as described in [148]) to the Convnet benchmark (e.g., we 

remove unnecessary timing and logging code). We test the training phase (forward and 

backward propagation) and configure each run to have multiple (>100) iterations, which 

simulates the real use of these frameworks. Also, by default, the batch size is set to 128, 

which is a commonly used value. 

Neural networks: In our evaluation we use four ImageNet winner neural network 

models: AlexNet v2 [161], OverFeat [162], VGG_A [138] and GoogleNet [163]. These 

networks have been proven successful models and are included in the Convnet 

benchmark. 

Hardware: We perform all experiments on a single machine including a 16-core Intel 

Xeon E5 - 2650 v2 @ 2.6GHz with Hyper-Threading enabled, an Nvidia Tesla K20m 

GPU with 5GB memory and an Nvidia Titan X GPU with about 12GB memory. The 

machine has 32GB DDR3 main memory and a 128 GB SSD hard drive, and runs CentOS 

v7. 

Software: The drivers, libraries and frameworks used in our experiments are: CUDA 

7.0, cuDNN v3, OpenBLAS 0.2.16, Caffe (commit ID be163be), Torch 7 (commit ID 

eb8d7f2), and TensorFlow (commit ID fd464ca), MXNet (commit ID d25053) and 

CaffeConTroll (commit ID 8191f6c). The CPU and DRAM power data are collected via 

Intel’s Running Average Power Limit (RAPL) interface [164] and the GPU power is 

obtained via the Nvidia System Management Interface [165].  
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Figure 56: Comparison between native GPU implementation and cuDNN v3 library 

in Caffe 

5.2.3 Overall Results on CPU & GPU 

A. Native GPU implementations versus cuDNN 

Because GPUs can provide more computational power than general-purpose CPUs, most 

deep learning frameworks rely on GPUs to provide fast training and inference. To 

facilitate GPU-accelerated deep learning, Nvidia released the cuDNN library, which 

includes highly optimized implementations of common operations found in neural 

networks (e.g. convolution, pooling). Although some early developed frameworks like 

Caffe and Torch have their own GPU implementations, newer frameworks (e.g. 

TensorFlow) rely on cuDNN for neural network related operations. In this section we 

compare native GPU implementations of neural network operations with those found in 

the cuDNN library.  

Figure 56 presents the results of this analysis on the Caffe framework, which can be 

configured to either use a native GPU implementation or rely on the cuDNN library. We 

tested 500 iterations of forward and backward propagation with a batch size of 128. In the 

figure, the bars represent the energy consumption per image processed (left y-axis). 
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Specifically, the bottom (red) and top (blue) part of each bar indicate the energy 

consumption of GPU and CPU, respectively. The two lines show the average power 

consumption (in Watts) of GPU and CPU (idle); the power consumption scale is on the 

right y-axis. On top of each bar we report the execution time of a single iteration. In the 

experiments we use two Nvidia GPUs: a K20m and a Titan X (shown as K20 and TX 

along the x-axis, respectively) and four networks (AlexNet, OverFeat, VGG_A and 

GoogleNet). Due to its limited memory capacity, we could not run the VGG_A and 

GoogleNet networks on the K20m GPU.  

As can be observed, cuDNN yields higher GPU power and lower energy consumption 

than native GPU code on both K20m and Titan X. The increase in power consumption 

from native GPU kernel to cuDNN varies from 2% (OverFeat on Titan X) to 48% 

(GoogleNet on Titan X). On average, cuDNN increases power consumption by 16% and 

reduces energy consumption by 42%. This can be explained as follows. Due to its higher 

GPU utilization, cuDNN leads to higher power consumption than native GPU code. 

However, by significantly reducing the training time, cuDNN diminishes the total energy 

consumption. 

If we compare the power and energy consumption of the CNN code on different GPU 

platforms, we can conclude that, although Titan X consumes more power than K20m, it 

is more energy-efficient. Taking AlexNet as an example, when moving from K20m to 

Titan X, the energy consumption is reduced by 15% (for native GPU code) and by 54% 

(for cuDNN). Compared to K20m, Titan X can deliver more computational power, 

leading to higher power consumption but also to lower execution time. The reduction in 
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execution time is significant enough to yield better energy efficiency despite the higher 

power consumption.  

Figure 56 shows another interesting fact: the CPU consumes a significant amount of 

energy although it mostly is in the idle state, which should not be ignored. As can be seen, 

the CPU idle power is about 67w in all cases, while the GPU power varies from 104w to 

134w on K20m and from 204w to 228w on Titan X. In general, the CPU accounts for 22% 

to 40% of the total energy consumption. This indicates that, to be energy-efficient, a 

CNN framework should utilize both CPU and GPU during the training phase.  

Since cuDNN leads to better performance and is more energy-efficient than native 

GPU implementations of neural network related kernels, we use cuDNN as the default 

GPU library in all remaining experiments.  

B. GPU frameworks 

There are many frameworks that use GPUs to accelerate CNN training. We selected five 

popular frameworks: Caffe [154], Torch [155], TensorFlow [156], MXNet [157] and 

Nervana [158]. The first four support both K20m and Titan X, while Nervana supports 

only Titan X. Since Nervana supports 16- and 32-bit floating-point arithmetic, for this 

framework we have two settings (TX-fp16 and TX-fp32, respectively). Figure 3 reports 

the results obtained by running forward and backward propagation on AlexNet using a 

batch size of 128. As in Figure 2, the bars represent the energy consumption per image 

(y-axis on the left), the lines show the CPU/GPU power in Watts (y-axis on the right), 

and the numbers on the bars represent the execution time of each iteration.  
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Figure 57: Comparison among different frameworks on K20m and TitanX GPUs 

As can be seen, in these experiments Titan X consumes an average power of 227w, 

74% more than K20 (130w). Torch outperforms other frameworks in terms of energy 

efficiency on K20m, and performs similarly to Caffe and Nervana on Titan X. Using 16-

bit floating-point arithmetic allows a 10% energy reduction over single precision 

arithmetic. We can again observe that CPU idle power cannot be ignored, and is 

especially significant in the case of K20 (since this GPU leads to longer execution times).  

C. CPU frameworks 

In this section we study the energy and power behavior of CNN frameworks when using 

only CPUs. Because of its wide use and flexibility, in this set of experiments we focus on 

Caffe and its derivatives. Caffe supports three CPU libraries (Atlas, OpenBLAS and 

MKL) that can be statically configured. In our evaluation, we also consider Caffe-

OpenMP (an optimized CPU version of Caffe) [166] and CaffeConTroll (a Caffe’s 

derivative that uses an optimization called “lowering” [152]). The results of this 

comparison are shown in Figure 58. 
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Figure 58: Comparison among CNN frameworks on CPUs 

The performance of these frameworks and libraries on CPU is significantly affected 

by the degree of multithreading. Our machine has 16 physical cores and all the CPU 

versions are configured to spawn at most 16 threads. To accurately measure power and 

energy consumption of CPU-based frameworks, we also measure and report the DRAM 

power data.  

As can be seen from Figure 58, the average power consumption of different CPU-

based frameworks varies from 103w to 188w. Compared to CPU, DRAM consumes a 

relatively small portion of energy (11%). Among these CPU versions, Caffe-OpenMP is 

the most energy-efficient and consumes 2.9 Joules per image processed. It is worth 

noting that while Caffe-OpenMP is more energy efficient than other CPU 

implementations, it consumes over twice the amount of energy than all considered GPU 

frameworks. We can conclude that CPUs are generally less energy-efficient than the 

GPUs for training CNNs. 
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Figure 59: Breakdown of energy consumption of AlexNet and OverFeat on K20 

and CPU using Caffe 

5.2.4 Effect of NN and Batch Size Configuration 

A. NN Structure  

In this section, we focus on the impact of the network’s structure on energy efficiency. 

To this end, we disassemble AlexNet and OverFeat into four types of layers 

(convolutional, pooling, fully connected, and ReLU) and measure the distribution of the 

energy consumption across these layers. In order to ensure that our approach is accurate, 

we verified that the cumulative energy consumption results from all layers are coherent 

with the measurements on the integrated network. In Figure 59 we show the percentage 

breakdown of the energy consumption across layers on GPU and CPU using Caffe. As 

can be seen, convolutional layers are predominant and consume 87% of the total energy 

consumption. The second most power-hungry layers are fully connected layers, which 

account for 10% of the total energy consumption. Pooling layers and ReLU layers (which 

apply activation functions) account for less than 5% of the energy consumption. This 
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trend is even more noticeable for OverFeat. In OverFeat, the convolutional layers have 

more filters (leading to a larger number of neurons) than in AlexNet. Although OverFeat 

has the same number of layers as AlexNet, its convolutional layers consume a larger 

portion of the energy, as high as 95%, 93% and 92% on K20m, Titan X and CPU, 

respectively. From this analysis we can conclude that, in order to optimize energy 

consumption of deep CNNs, the priority should be on improving the energy efficiency of 

the convolutional layers.   

B. Batch Size 

The batch size is an important setting when training a neural network. Larger batch sizes 

lead to more images being packed into a batch and sent to the network for training in a 

single iteration. Intuitively, larger batches allow more data-level parallelism. However, 

loading a larger batch requires more memory to store the data, possibly exhausting the 

limited GPU memory. 

Figure 60 reports the power and energy consumption of AlexNet on K20, Titan X and 

CPU when the batch size varies from 8 to 256. On all three hardware platforms, 

increasing the batch size leads to linear growth in power. Small batch sizes (e.g., 8 or 16) 

cause CPU and GPU under-utilization. An increase in the batch size will yield higher 

hardware utilization, and, consequently, an increase in power consumption. However, as 

can be seen, increasing the batch size can reduce the energy consumption per image. For 

instance, when the batch size is increased from 8 to 16, the energy consumption per 

image is reduced by 13%, 18% and 31% on K20, Titan X and CPU, respectively. When 

the hardware utilization saturates, however, a further increase in the batch size does not 

further improve energy consumption. For example, when increasing the batch size from 
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Figure 60: Power and energy consumption on K20m, Titan X and CPU with 

different batch sizes using Caffe 

128 to 256, the energy consumption per image reduces only by 4% on K20 and by 7% on 

CPU, while Titan X does not benefit from large batch sizes. 

 

5.2.5 Effect of Hardware Settings 

In this section, we analyze the impact of different hardware settings on power and energy 

consumption. Specifically, we investigate how the use of Hyper-Threading on CPU and 

the use of ECC and DVFS on GPU affect the performance, power and energy 

consumption of CNNs.  

A. Hyper-Threading 

Hyper-Threading (HT) is a technology introduced by Intel in order to improve the 

performance obtainable through parallelization. With HT enabled, the operating system 

treats each physical processor as two logical cores. HT can improve the performance of 

memory/IO intensive applications by hiding their latencies, but it often degrades the 
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Figure 61: Experimental results with different Hyper-Threading settings 

performance of compute intensive workloads. To evaluate the impact of HT on deep 

learning frameworks, we conducted experiments with HT enabled/disabled, in each case 

configuring the number of threads to equal the number of logical cores. Because our 

machine has sixteen physical cores, when HT is enabled we set the application to spawn 

thirty-two threads.  

Figure 61 shows the results reported on Caffe and its derivatives. CPU and DRAM 

energies are stacked into one bar named HT-E-XXX or HT-D-XXX. In the former case, 

HT is enabled; in the latter case, HT is disabled. The y-axis on the left side shows the 

energy consumption per image. The lines represent the power curves of CPU and DRAM 

and the power scale is on the y-axis on the right side. The values on the bars indicate the 

total execution time of each setting. Although different libraries and implementations 

experience different power consumptions, the power consumption is not significantly 

affected by HT. However, HT affects the execution time and, consequently, the energy 
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consumption. As can be seen, while MKL reports a slight benefit from enabling HT (5% 

speedup and 4.8% energy saving), OpenBLAS, OpenMP, CaffeConTroll all suffer 

various degrees of performance degradation and consume more energy when HT is 

enabled. In the worst case (Caffe with OpenBLAS), enabling HT leads to an increase in 

execution time and energy consumption by 45% and 42%, respectively. This experiment 

shows that performance and energy efficiency of neural network training are generally 

negatively affected by HT, since this application saturates the hardware with computation 

and does not experience benefits from memory latency hiding.  

B. ECC 

Nowadays Error Correction Code RAM is the standard configuration for high 

performance computing clusters. With ECC enabled, RAM can detect and correct single 

bit errors. This feature is also available on high-end GPUs, like the ones used in this 

study. 

Although enabling ECC can reduce errors, this feature does not come for free. When 

ECC is enabled, some bits are reserved, thus reducing the available memory footprint and 

bandwidth. In addition, enabling ECC causes applications to suffer from more expensive 

synchronization and uncoalesced memory accesses [167].  

We have tested the use of ECC on K20m using Caffe along with the cuDNN library. 

Our experiments show no significant changes in performance and energy efficiency when 

ECC is enabled. This is because CNN training does not require synchronization 

operations and present relatively regular and coalesced memory access patterns. However, 

we have observed that enabling ECC leads to a 6.2% increase in memory utilization. 

Since deep CNN applications typically do not require bit-level accuracy and can tolerate 



156 
 

random errors, for these applications disabling ECC can be beneficial in that it allows a 

better utilization of the limited memory capacity of the GPU. We note that modern GPUs 

have from 1 to 12 GB of device memory, while CPUs are typically equipped with 16GB 

up to 1 TB RAM.  

C. DVFS 

Dynamic Voltage and Frequency Scaling (DVFS) is an advanced power-saving 

technology that aims to lower a component’s power state while still meeting the 

performance requirement of the workload [168]. Both Titan X and K20m GPUs support 

DVFS with various clock frequencies. On these devices, DVFS can control two clock 

frequencies: memory frequency and core frequency. Nvidia provides the nvidia-smi 

utility and the Nvidia Management Library (NVML) to control these frequencies. 

Table 9 shows the clock frequencies 

supported on K20m for GPU cores and 

memory. When the memory frequency is 

set to 324MHz, the only core frequency 

is 324Hz. Titan X support wider range of 

core and memory frequencies. Due to 

space limits, in this paper we only report 

results K20m. 

Figure 62 shows the power, energy and performance results obtained when applying 

different memory and core frequencies to CNN training. In the experiments, the batch 

size is varied from 16 to 128. As expected, power consumption increases with the 

operation frequency. In the experiments, the power consumption varies from 44w at 

Table 9: Memory and core frequencies 
supported on K20m GPU 

Memory Frequency 
(MHz) 

GPU Core Frequency 
(MHz) 

2600 

758 
705 
666 
640 
614 

324 324 
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Figure 62: Power and energy consumption using different memory and core 

frequencies 

324/324 MHz frequencies to 118w at 758/2600 MHz frequencies. This wide range of 

power consumption degrees shows that frequency scaling is an effective method that can 

be leveraged to meet power cap requirements. 

For energy-consumption, our experiments show a “valley” trend: the energy-

consumption is relatively high at both the lowest and highest frequencies, and is 

relatively low at intermediate frequencies. This is because low frequency leads to low 

power consumption at the cost of longer execution time, negatively affecting the total 

energy consumption. Conversely, increasing frequency beyond a certain level increases 

the power consumption while providing only a limited return on performance, also 

leading to energy inefficiency. This “energy-valley” trend indicates that training deep 

neural networks in an energy-aware fashion requires operating at frequencies that allow a 

good trade-off between execution time and power consumption. 
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5.3 CNN on CPU-GPU heterogeneous architecture 

5.3.1 Motivation 

GPUs have achieved great success in accelerating various applications. Compared to 

CPUs, GPUs are comprised of hundreds of cores that can provide more computation 

power in throughput oriented computing. However, researchers from Intel have proven 

that the performance gap between CPUs and GPUs is exaggerated, and the comparison 

between an optimized GPU implementation and a single-threaded CPU baseline is often 

unfair [43]. Currently, using GPUs for training of CNNs has become the de facto 

approach. On Nvidia’s website, using Caffe with GPUs can achieve 11x~14x speedup 

over CPU version for training CNNs. However, S. Hadjis et al. [44] point out that the 

CPU baseline has not been optimized, and their proposed optimizations on CPUs can 

narrow the performance gap to 1.86x, which is comparable to the performance on GPUs. 

We observe the current research community’s obsession with how to build a larger 

CNN to improve accuracies in different tasks and how to speedup the parameter learning 

of CNNs. However, the race for speed is at the sacrifice of energy cost, which is a key 

metric for any computing system. Hence, power consumption efficiency of CNNs has not 

been addressed to the extent needed. In traditional competitions like ILSVRC, 

classification accuracy is the only metric to decide final ranks. More recently, energy 

efficiency has been taken into consideration and a new competition named “Low-Power 

Image Recognition Challenge” (LPIRC) has been developed [45]. This competition is a 

part of the IEEE Reboot Computing Initiatives and successfully held its 1st competition in 

early 2015. As CNNs are increasingly used in real world applications, there is a growing 

interest in energy related research of CNNs.  
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Although GPUs can deliver a significant amount of computation power, deploying 

large-scale neural networks on GPUs is limited by the constrained size (1GB - 12GB) of 

GPU global memory. This prevents exploiting large-scale neural networks to improve 

classification accuracies for various computer vision and machine learning tasks. On the 

other hand, CPU has fewer cores than GPU, and the larger memory attached to CPU 

(several hundred of GB to TB level) makes it feasible to deploy large CNNs with billions 

of parameters on a single node computer. Regardless of the fact that CPUs and GPUs 

have complementary advantages and disadvantages regarding computation power and 

memory space, current frameworks either use CPUs or GPUs and cooperative CPU-GPU 

methods have not been fully explored. We believe that fully utilizing the heterogeneous 

system (combining CPUs and GPUs) cannot only extend the ability to train large 

networks, but also improve the overall system utilization, thereby increasing throughput 

as well as energy efficiency. 

Based on previous analysis, we propose two different CNN parallelization methods 

on heterogeneous CPU-GPU platforms: Heterogeneous Net (HetNet) and Hybrid Net 

(HybNet) [169]. For HetNet, the CNN model is mirrored on both CPUs and GPUs. In 

each forward or backward propagation, the batched data are partitioned into a CPU batch 

and a GPU batch and then fed to corresponding devices accordingly. For HybNet, a CNN 

is partitioned into non-sharing CPU layers and GPU layers. In each forward or backward 

propagation, the batched data need to move between CPU layers and GPU layers. 

 

5.3.2 HetNet 
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Figure 63: An illustration of HetNet 

Figure 63 is an illustration of HetNet. In this 

approach, we keep two mirrored parts of the 

same model: one on the CPU (CPUNet) and 

one on the GPU (GPUNet). When the input 

data are fetched from the hard drive, we 

need two batches: one for CPU (CPU batch) 

and the other for GPU (GPU batch). In this 

way, we can perform training or 

classification on CPUNet and GPUNet in 

parallel with its own mini batch. Using 

CNNs for classification only requires a forward pass without updating the parameters, so 

the data will be fed into CPUNet or GPUNet without introducing any extra overhead. 

However, for learning parameters of CNNs from training data, parameter updating is 

needed after a full forward and backward propagation.  

One problem we need to address is how to update the parameters when training a 

neural network. Training CNNs requires a forward propagation and a backward 

propagation to get the gradients. In HetNet, two mirrored networks are present thus two 

different copies of gradients exist. One is from the CPUNet and the other is from 

GPUNet. A straightforward but reasonable approach is to merge the two copies of 

gradients using asynchronous data parallel training [156]. 

HetNet can fully utilize both CPUs and GPUs in the heterogeneous system and 

thereby increase the total hardware utilization. The only possible overhead is merging 

two copies of gradients. However, this operation can be easily and efficiently parallelized 
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Figure 64: An illustration of HybNet 

efficiently by vectorization. With improved hardware utilization, we expect that the total 

training time can be reduced. From an energy efficiency perspective, since static power 

consumption has contributed to a large portion of the total energy cost, idle CPU can still 

consume a significant amount of energy. So HetNet also improves the energy efficiency 

by including CPUs for computation tasks. 

 

5.3.3 HybNet 

Figure 64 shows another approach (HybNet) 

that we use to deploy CNN models on a CPU-

GPU heterogeneous system. This method is 

motivated by the fact that FC layers have 

more parameters than convolutional and 

pooling layers but are less computationally 

intensive (multiplication vs. convolution). 

Also, FC layers are often placed in the last 

few layers of a CNN, which make the 

partition possible. We place all the FC layers 

on CPUs while placing all convolutional and pooling layers on GPU. So in forward 

propagation, the data go through convolutional layers and pooling layers on GPU first 

and then the output of last pooling layer is copied to CPU. Then, the FC layers are ready 

to perform the remaining forward path. For the backward propagation, the data are 

processed through the FC layers on CPU. After being processed by the last fully 
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connected layer, the propagated gradients are copied from CPU to GPU. Then, the GPU 

will complete the remaining backward propagation to get the gradients. 

The proposed HybNet approach partitions the network into GPU layers (beginning 

convolutional and pooling layers) and CPU layers (ending FC layers). So it moves parts 

of the neural network to the CPU so that limited GPU global memory can hold a larger 

model. However, this will incur data transfer between CPU and GPU for every mini 

batch as well as fine-grained synchronizations. Also, even though FC layers perform 

vector-vector multiplications, which can be efficiently implemented on CPUs using high 

performance libraries (e.g., OpenBLAS [46] and MKL [47]), we still cannot ignore the 

performance gap between CPU and GPU. Nonetheless, the benefit of fitting larger 

networks into CPU-GPU heterogeneous system may lead to higher accuracy in machine 

learning tasks. 

 

5.3.4 Experimental Evaluation 

A. Performance Evaluation of HetNet 

To evaluate the performance of HetNet, we modified Caffe to support CPUNet and 

GPUNet. We used the same test platforms and software configurations as in Chapter 

5.2.2.B. Figure 65 shows the processing time of HetNet. We used three software settings: 

GPU-only (labeled as “K20” and “Titan X”), HetNet-XX-MKL and HetNet-XX-OMP. 

The suffix “-MKL” indicates implementations based on MKL and suffix  “-OMP” 

indicates the OpenMP implementation of optimized Caffe. The numbers on the bars 

indicate the speedups when the CPU-MKL code serves as the baseline. We can see that 

including CPUNet as part of processing engine in HetNet does improve the performance. 
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Figure 65: Performance of HetNet 

However, the entity of this improvement depends on the performance gap between CPU 

and GPU. For instance, the K20 GPU has lower single FLOPS than Titan X. As a 

consequence, utilizing Titan X can achieve a speedup as high as 39x over CPU, 

compared to a maximum 10x speedup on K20 over CPU. Another observation is that the 

achieved speedup of HetNet over GPU-only version depends on the performance of the 

CPUNet and the GPUNet. We can see that using the same CPUNet on the same CPU, 

HetNet achieves 20% to 32% speedup on K20 but less than 9% on Titan X. Also, since 

the OpenMP optimized Caffe can provide better performance than MKL enabled Caffe, 

HetNet using OpenMP version of CPUNet narrows the performance gap between CPU 

and GPU, thus achieving higher speedups of HetNet over GPU-only code. 

B. Performance Evaluation of HybNet 



164 
 

 
Figure 66: Performance of HybNet with different neural networks 

As we described in Chapter 5.3.3, HybNet partitions the network into GPU layers 

(convolutional and pooling layers) and CPU layers (ending FC layers). This causes data 

movements between CPU and GPU at the boundary between the layers mapped onto 

these devices, thus introducing some overhead. In addition, the same layers are slower on 

CPU than on GPU. Thus having CPU layers in HybNet incurs some performance 

degradation. Figure 66 shows the performance of HybNet on K20 and Titan X on 

different networks. The numbers following the network names are the batch sizes. We 

can see that there is no significant difference between our HybNet and the GPU-only 

version on GoogleNet. This is because GoogleNet has only a single small FC layer. The 

other three networks (i.e. AlexNet, OverFeat and VGG) have three large FC layers each. 

Offloading these FC layers to CPU, which is slower than GPU, leads to longer processing 

time. From the figure, we can see that on K20, HybNet leads to a drop in processing 

speed ranging from 7% to 14% over a GPU-only implementation. On Titan X, due to the 
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Figure 67: GPU memory footprint of HybNet with different neural networks 

enlarged performance gap between CPU and Titan X (compared to K20), the 

performance degradation is more obvious, ranging from 16% to 42%. 

In terms of GPU memory usage, HybNet benefits from moving all FC layers from 

GPU to CPU. Figure 67 shows the GPU memory footprint for all the test cases in Figure 

66. Since GoogleNet has only a single small FC layer, in this case the GPU memory 

footprint of HybNet is almost the same as that of the GPU-only version. For the other 

three networks, on average HybNet reduces the GPU memory usage by 30% compared to 

the GPU-only solution, although the exact numbers depend on the network and batch size. 

The data residing on GPU store two pieces of information: learnable parameters of 

the network and intermediate data flowing through the network. Once the network is 

designed, the total number of learnable parameters is fixed. However, the size of the 

intermediate data depends on the batch size: increasing the batch size will increase the 

amount of intermediate data. Figure 68 and Figure 69 show the performance and GPU 

memory consumption of HybNet on AlexNet using different batch sizes (from 16 to 128), 
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Figure 68: Performance of HybNet with AlexNet under different batch sizes 

respectively. In Figure 68, the numbers on the HybNet bars are the ratios of HybNet’s 

processing time over GPU-only processing. We can observe that increasing the batch size 

amortizes the performance degradation. This is because, for large batches, the 

convolutional layers and pooling layers consume much more processing time than the FC 

layers. Therefore, as the batch size increases, the slowdown due to moving the FC layers 

to CPU has a lesser effect on performance.  

Figure 69 shows the GPU memory footprint of HybNet. As can be seen, with the 

increase of batch size, the total GPU memory footprint increases but the total amount of 

reduced memory seems to remain the same. This can be explained that the FC layers 

moved to the CPU have a lot of learnable parameters but a few data, thus increasing data 

batch size has limited impact on increasing the memory footprint of the FC layers. This 

indicates that our HybNet can efficiently reduce the memory footprint when the batch 

size is small.  
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Figure 69: GPU memory footprint of HybNet with AlexNet under different batch sizes 

 

5.4 Virtual Memory for CNN on GPU 

5.4.1 Motivation 

In 2012 AlexNet was the first CNN-based model to win the ImageNet Large Scale Visual 

Recognition Competition (ILSVRC), reducing the error rate dramatically from 26% to 

16%. In subsequent years, other CNN-based models dominated ILSVRC, and each year 

researchers have proposed new models with more layers and convolutional kernels, 

leading to deeper network architectures, and pushing the state-of-the-art of image 

recognition to human levels. By including more learnable parameters, larger neural 

networks have the potential for achieving higher accuracy. However, larger and deeper 

neural networks require more powerful processors to be trained in reasonable time. GPUs 

can provide more than 10x speedups over CPUs and have become the de-factor platform 

for training neural networks. However, GPUs have limited device memory (4 GB to 12 

GB). We have observed that current CNN frameworks for GPU, like Caffe, allocate all 
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memory required by a CNN on the GPU at the beginning of computation and free it only 

at the end. Large-scale neural networks often have large memory footprints exceeding the 

GPU memory, making it infeasible for a GPU to accommodate and train these models.  

On the other hand, virtual memory has become a standard component in operating 

systems for GPUs and existing work [170] has explored extending the concept of virtual 

memory to GPUs. This motivates us to design and implement Virtual Deep Neural 

Network (vDNN), a memory manager with virtual memory support for CNNs on GPU. 

We have prototyped vDNN on top of Caffe. Our experiments show that vDNN allows 

training large-scale neural networks (e.g. 30 GB memory footprint) on K20 (4.5 GB 

device memory) and Titan X (12 GB device memory) at the cost of some runtime 

overhead.  

 

5.4.2 Design 

The main component of vDNN is a memory manager that supports virtual memory. The 

basic idea to keep a persistent copy of all the data of a CNN on the host (CPU) memory, 

and to move the data required in each step of the GPU computation from host to device 

on demand. Once the device copy is allocated, it will reside on GPU unless it is swapped 

out to the persistent copy in the host memory due to a shortage of device memory. This 

swap operation can happen when a data copy is requested from the device but serving 

this request would cause the device capacity to be exceeded.  

The memory manager includes the following components: (1) mapping table, (2) 

swap area, (3) swap candidate pool and (4) working set.  
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Mapping table: This table stores the mapping between device copies and host copies 

of the data. It is similar to an OS page table, which stores the address translation between 

physical and virtual memory. The main difference is that in vDNN the data are organized 

in chunks with different sizes (instead of fixed “page sizes”). 

Swap area: The swap area resides in the host memory and stores the persistent copies 

of the data.  

Swap candidate pool: When the requested device memory allocation exceeds the 

device capacity, one or multiple swaps will happen. The swap candidate pool maintains a 

record of the data copies residing on GPU that can potentially be moved to the swap area 

in the host memory so as to free GPU memory.  

Working set:  The working set maintains a record of data copies that are actively in 

use on the GPU. Unlike the swap candidate pool, the data copies in the working set 

should not be swapped out because they are currently used.  

 

5.4.3 Experimental Evaluation 

To evaluate the performance of our virtual memory system, we conduct two experiments. 

The first one is a meant to evaluate the overhead of vDNN’s virtual memory system. In 

this experiment, we use small CNN models that fit the device memory, but limit the 

amount of GPU memory used by vDNN so as to force some swap operations. We then 

compare the performance of vDNN with that of the unmodified Caffe. We recall that 

Caffe allocates and de-allocates all the CNN data on GPU at the beginning and at the end 

of the computation, respectively. In the second experiment, we let the memory manager 
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Figure 70: Performance of vDNN with 1G GPU memory  

use all the GPU memory and train some very large networks that would require more 

device memory than available on current GPUs. 

In Figure 70 we show performance data collected when configuring vDNN to use 1 

GB physical GPU memory. We trained four models with different batch sizes. On the x-

axis, each test is named in the format of “network name” - “batch size” - “required 

memory size”. Since vDNN is configured to use 1GB device memory and the memory 

footprint of the considered neural networks ranges from 1.3 GB to 4.2 GB, swap 

operations will happen in all cases. The numbers on the bars indicate the speedup of each 

implementation over Caffe-MKL. For each neural network, we test Caffe on GPU with 

and without vDNN. As can be seen, vDNN experiences performance degradation due to 

the swap overhead. For the smallest neural network, AlexNet-128-1.3G, vDNN achieves 

roughly half of the performance of original Caffe on GPU. This performance slowdown 

increases with the size of the CNN model. For instance, on K20 “AlexNet-128-1.3G”, 

vDNN achieves 50% performance of original Caffe but this number drops to 40% on 
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Figure 71: Performance of vDNN with full GPU global memory 

“AlexNet-256-2G”, 27.5% on “VGG-32-3.4G” and 20% on “GoogleNet-64-4.2G”. This 

is because larger models lead to more swap operations and data movements, hurting 

performance.  

Figure 71 shows results of the second experiment, in which vDNN manages the full 

available GPU memory and large models, which cannot fit into GPU memory, are trained. 

In this experiment, we train GoogleNet using different batch sizes. The naming 

convention on the x-axis is the same as in Figure 70 and “GN” stands for “GoogleNet”. 

The y-axis shows the processing time in exponential scale. Recall that K20 and Titan X 

have 4.5 GB and 12 GB device memory, respectively. Hence, on “GN-64-4G” no swap is 

necessary and the vDNN achieves almost the same performance as the original Caffe on 

GPU (overhead less than 2%). With the increase in batch size, the total memory required 

by the model also increases. As a result, swap operations become more frequent and the 

speedup of vDNN over CPU-MKL becomes smaller. From the Figure 71, we can see that 
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vDNN can facilitate training 24 GB model on K20 with 4.5 GB GPU memory and 31 GB 

model on Titan X with 12 GB memory. These models are larger than any available GPU 

in the market. vDNN makes training these very large neural networks possible on 

existing GPU hardware.   
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Chapter 6 Conclusion 

In this dissertation, we have studied the acceleration and deployment of three important 

categories of emerging applications on many-core processors. The considered 

applications range from bioinformatics, to graph processing and other applications with 

irregular computation and memory access patterns, to deep neural networks, which 

represent some of the most challenging and computational intensive problems faced in 

our research community. We have addressed several research questions related to the 

design of software systems for many-core platforms. Our contributions include: 

1) We have explored different implementations of the Needleman-Wunsch (NW) 

algorithm on GPU. The methods considered differ in their computational patterns, 

their use of the available hardware parallelism, and their handling of the data 

dependencies intrinsic in NW. Our analysis gives insights into the architectural 

benefits and costs of using GPUs for bioinformatics, and our proposed techniques 

are also applicable to other domains (e.g. computer vision algorithms).  

2) We have designed source-to-source transformation techniques to automatically 

generate parallel code for different many-core platforms (GPUs and the Intel 

Xeon Phi) starting from a platform-agnostic graph programming API. We have 

proposed a programming framework including programming and runtime support 

for dynamic memory allocation, and we have studied the effect of synchronization 

on the performance of our runtime library. 

3) We have explored an implementation space for graph algorithms on GPU. Our 

analysis shows that there is no optimal solution across graph problems and 
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datasets. We have proposed an adaptive runtime that dynamically selects the most 

suitable implementation among the ones resulting from the aforementioned 

exploration space and we have designed data structures that lead to minimal 

overhead when switching between implementations at runtime. Further, we have 

devised heuristics that guide the decisions of our adaptive runtime. 

4) We have proposed and studied several parallelization templates to allow the 

effective deployment of irregular applications with uneven work distribution on 

GPU. We have observed that a new GPU hardware feature - named dynamic 

parallelism (DP) – can help embedding work balancing mechanisms in 

applications, but its naïve use can suffer from significant overhead. To avoid this 

overhead, we have proposed a software-based workload consolidation mechanism 

for kernels relying on DP, and we have integrated these schemes in a directive-

based compiler. By automating our code transformations, we allow programmers 

to write simple code focusing on functionality rather than on performance. We 

have observed that static methods to configure the degree of multithreading of 

GPU kernels are ineffective in the presence of DP and we have proposed a 

systematic way to configure dynamic kernel launches 

5) We have conducted a comprehensive study on the power behavior and energy 

efficiency of numerous well-known CNNs and training frameworks on CPUs and 

GPUs, and we have provided a detailed workload characterization to facilitate the 

design of energy efficient deep learning solutions. We have extended existing 

CPU-only or GPU-only CNNs learning methods to CPU-GPU cooperative 
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operation. Further, we have proposed and implemented vDNN on top of Caffe to 

facilitate training large CNN models with limited GPU memory. 

Our work leaves some open research directions. These include: 

1) We have explored the acceleration of a specific bioinformatics application. In fact, 

many algorithms from bioinformatics and other application areas share similar 

computational patterns. Therefore, it would be interesting to generalize our study 

and propose more generic frameworks allowing the effective deployment of 

classes of applications with similar patterns. 

2) For irregular applications, we have limited our study to the single node/single 

GPU setting. However, with the ever-increasing dataset sizes in modern 

applications, parallelization on distributed systems becomes paramount. This will 

introduce more challenges related to graph partitioning, communication across 

partitions, and algorithm refactoring.  

3) Embedded systems including CPUs, GPUs and FPGAs are widely used in various 

areas such as consumer electronic products, drones, autonomous driving. It would 

be interesting to extend the workload characterization that we have proposed for 

training deep neural networks to these platforms. 
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