

FACILITATING EMERGING APPLICATIONS ON MANY-CORE PROCESSORS

__

A Dissertation

Presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

__

by

DA LI

Dr. Michela Becchi, Supervisor

JULY 2016

The undersigned, appointed by the dean of the Graduate School, have examined the
dissertation entitled

FACILITATING EMERGING APPLICATIONS ON MANY-CORE PROCESSORS

presented by Da Li,

a candidate for the degree of doctor of philosophy

and hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Michela Becchi

Dr. Tony Han

Dr. Zhihai He

Dr. William Harrison

Dr. Jason Xu

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to deeply thank my adviser, Dr. Michela Becchi, for

her valuable guidance and advice and for her vast reserve of patience and knowledge. I

am fortunate and grateful to have worked with her during my studies. I also appreciate

her generosity and flexibility in offering me opportunities to interact with other scientists

and explore various projects through internships from industries.

I would like also to express my sincere gratitude to Dr. Tony Han, Dr. Zhihai He, Dr.

William Harrison and Dr. Jason Xu for their teaching, mentoring and assistance. I want to

thank Dr. Ziliang Zong and Xinbo from Texas State University for their expertise,

feedback and overall support. I would like to thank all the current and previous members

of the Networking and Parallel System laboratory, especially Kittisak, Huan, Ruidong

and Henry who helped me with my research.

Finally, I would like to acknowledge my family and friends for their encouragement

and devotion. I am very grateful to have a supportive family who puts my education as

the first priority. I would express my deepest appreciation and thanks to my wife, Xin

Tong, who is better at science than me, for her love and support.

This work has been supported by National Science Foundation awards CNS-1216756,

CCF-1452454, CNS-1305359, and by gifts and equipment donations from NEC Labs

America and Nvidia Corporation.

iii

Table of Contents

ACKNOWLEDGEMENTS .. ii	

LIST OF FIGURES .. vii	

LIST OF TABLES ... xi	

ABSTRACT .. xii	

Chapter 1 Introduction .. 1	

1.1 Introduction ... 1	

1.2 Contributions .. 4	

1.3 Dissertation Organization ... 5	

Chapter 2 Background .. 6	

2.1 GPU Architecture and Programming Model .. 6	

2.2 Needleman-Wunsch Algorithm .. 9	

2.3 Irregular applications .. 11	

2.4 Convolutional neural networks ... 12	

Chapter 3 Bioinformatics Applications on CPU-GPU Clusters 15	

3.1 Motivation ... 15	

3.2 Related Work .. 16	

3.2.1 Early Works on Sequence Alignments .. 16	

3.2.2 Acceleration of Bioinformatics Application on GPUs 17	

iv

3.2.3 Sequence Alignments on GPUs ... 18	

3.3.4 Rodinia-NW: Needleman-Wunsch on GPU .. 19	

3.3 Design of GPU-workers .. 21	

3.3.1 TiledDScan-mNW: Multiple alignments with tiling 21	

3.3.2 DScan-mNW: Single-kernel diagonal scan ... 22	

3.3.3 RScan-mNW: Row scan via single CUDA core .. 24	

3.4 Experimental Evaluation ... 28	

3.4.1 Experimental setup ... 28	

3.4.2 Performance on single GPU ... 28	

3.5 Other Applications with Similar Computation Pattern 35	

Chapter 4 Irregular Applications on Many-Core Processors 40	

4.1 Related Work .. 41	

4.2 Unified Programming Interface .. 44	

4.2.1 General Design & Methodology .. 46	

4.2.2 Programming API .. 47	

4.2.3 Case Study ... 50	

4.2.4 Compiler Design .. 54	

4.2.5 Runtime Library Design .. 58	

4.2.6 Performance Evaluation ... 61	

4.3 Adaptive Computing ... 68	

v

4.3.1 Motivation .. 69	

4.3.2 Exploration Space .. 74	

4.3.3 Implementation .. 81	

4.3.4 Adaptive Runtime .. 86	

4.3.5 Experimental Evaluation .. 91	

4.4 Parallelization Templates .. 99	

4.4.1 Motivation .. 100	

4.4.2 Irregular Nested Loop .. 101	

4.4.3 Experimental Evaluation .. 105	

4.5 Workload Consolidation ... 113	

4.5.1 Dynamic Parallelism .. 114	

4.5.2 Application Characterization ... 115	

4.5.3 Motivation .. 116	

4.5.4 Methodology .. 121	

4.6.4 Experimental Evaluation .. 132	

Chapter 5 Deep Neural Network on CPU-GPU ... 141	

5.1 Related Work .. 141	

5.2 Energy Efficiency ... 142	

5.2.1 Motivation .. 142	

5.2.2 Methodology .. 144	

vi

5.2.3 Overall Results on CPU & GPU .. 146	

5.2.4 Effect of NN and Batch Size Configuration .. 151	

5.2.5 Effect of Hardware Settings ... 153	

5.3 CNN on CPU-GPU heterogeneous architecture ... 158	

5.3.1 Motivation .. 158	

5.3.2 HetNet .. 159	

5.3.3 HybNet ... 161	

5.3.4 Experimental Evaluation .. 162	

5.4 Virtual Memory for CNN on GPU ... 167	

5.4.1 Motivation .. 167	

5.4.2 Design .. 168	

5.4.3 Experimental Evaluation .. 169	

Chapter 6 Conclusion .. 173	

References ... 176	

VITA ... 191	

vii

LIST OF FIGURES

Figure 1: Fermi GPU architecture and the SM ... 7	

Figure 2: Kepler GPU architecture and SMX v.s. Fermi’s SM 8	

Figure 3: Calculation of matrix in NW ... 10	

Figure 4: Example of Deep Convolutional Neural Network (LeNet) 13	

Figure 5: TiledDScan-mNW and the mapping to GPU cores and SMs 22	

Figure 6: DScan-mNW and the mapping to GPU cores and SMs 23	

Figure 7: RScan-mNW and of the mapping to GPU cores and SMs 24	

Figure 8: Evaluation of memory optimizations on Rodinia-NW 30	

Figure 9: TiledDScan-mNW Kernel speedup over Rodinia-NW 31	

Figure 10: DScan-mNW Kernel speedup over Rodinia-NW 32	

Figure 11: Kernel speedup of RScan-mNW on sequences of various lengths 33	

Figure 12: Speedup of DScan-mNW over an 8-threaded CPU implementation 34	

Figure 13: Tiled horizontal-vertical scan (CW-TiledHV) .. 36	

Figure 14: Data flow of CW-TiledHV implementation .. 37	

Figure 15: WF-Tiled implementation ... 38	

Figure 16: Proposed graph processing system .. 45	

Figure 17: Graph programming API ... 48	

Figure 18: A-DFA compression algorithm ... 51	

Figure 19: PageRank algorithm .. 52	

Figure 20: DFA (subset) construction algorithm .. 53	

Figure 21: Hierarchical-CSR with level-2, level-3 nodes/edges arrays 55	

viii

Figure 22: A-DFA compression –Speedup of GPU over serial CPU implementation 62	

Figure 23: A-DFA compression – Speedup of Xeon Phi over serial CPU

implementation. .. 63	

Figure 24: PageRank on dynamic graphs with hierarchical CSR 64	

Figure 25: DFA construction – Speedup of multi-core CPU, GPU and Intel Phi over

serial CPU code ... 65	

Figure 26: DFA construction using different allocators and GPUs 66	

Figure 27: Outdegree distributions of CO-road, Amazon and CiteSeer networks 71	

Figure 28: Unordered SSSP – size of the working set during the execution (CO-road,

Amazon and CiteSeer networks) ... 72	

Figure 29: Exploration space .. 75	

Figure 30: Ordered and unordered BFS algorithms .. 76	

Figure 31: Ordered and unordered SSSP algorithms .. 77	

Figure 32: Working set: (a) bitmap vs. (b) queue ... 80	

Figure 33: Compressed sparse row graph representation ... 82	

Figure 34: Generic CPU pseudo-code for BFS and SSSP .. 83	

Figure 34: Pseudo-code of kernel functions (computation and workset_gen) 84	

Figure 36: Overview of our adaptive framework ... 87	

Figure 37: Design space .. 91	

Figure 38: Processing speed of bet implementation ... 94	

Figure 39: Performance under different T3 settings (SSSP) 96	

Figure 40: Performance under different sampling rates (SSSP) 97	

ix

Figure 41: Performance of our adaptive runtime on BFS (to the left) and SSSP (to the

right) – baseline: best static solution ... 98	

Figure 42: Parallelization templates for irregular nested loops 102	

Figure 43: SpMV: Speedup of load balancing code variants over basic thread-mapped

implementation under different settings ... 108	

Figure 44: SSSP: Speedup of load balancing code variants over basic thread-mapped

implementation ... 109	

Figure 45: Speedup of load balancing code variants over basic thread-mapped

implementation under different lbTHRES settings ... 111	

Figure 46: Basic-dp code template and sample codes .. 118	

Figure 47: Workload consolidation – illustration ... 122	

Figure 48: Kernel transformation flow ... 124	

Figure 49: Example of use of our workload consolidation compiler directive 129	

Figure 50: Performance of different buffer implementations (SSSP) 134	

Figure 51: Performance of different kernel configurations (TD) 135	

Figure 52: Overall speedup over basic dynamic parallelism 137	

Figure 53: Warp execution efficiency across benchmarks 138	

Figure 54: SMX occupancy (achieved hardware utilization) 139	

Figure 55: DRAM transactions ratio over basic dynamic parallelism 140	

Figure 56: Comparison between native GPU implementation and cuDNN v3 library

in Caffe .. 146	

Figure 57: Comparison among different frameworks on K20m and TitanX GPUs . 149	

Figure 58: Comparison among CNN frameworks on CPUs 150	

x

Figure 59: Breakdown of energy consumption of AlexNet and OverFeat on K20 and

CPU using Caffe ... 151	

Figure 60: Power and energy consumption on K20m, Titan X and CPU with different

batch sizes using Caffe .. 153	

Figure 61: Experimental results with different Hyper-Threading settings 154	

Figure 62: Power and energy consumption using different memory and core

frequencies .. 157	

Figure 63: An illustration of HetNet ... 160	

Figure 64: An illustration of HybNet .. 161	

Figure 65: Performance of HetNet .. 163	

Figure 66: Performance of HybNet with different neural networks 164	

Figure 67: GPU memory footprint of HybNet with different neural networks 165	

Figure 68: Performance of HybNet with AlexNet under different batch sizes 166	

Figure 69: GPU memory footprint of HybNet with AlexNet under different batch

sizes ... 167	

Figure 70: Performance of vDNN with 1G GPU memory 170	

Figure 71: Performance of vDNN with full GPU global memory 171	

xi

LIST OF TABLES

Table 1: Characteristics of the GPUs used in our evaluation 29	

Table 2: Summary of applications and speedup over serial code 68	

Table 3: Dataset characterization. ... 70	

Table 4: Speedup of BFS (GPU implementation over serial CPU baseline) 92	

Table 5: Speedup of SSSP (GPU code over serial CPU baseline) 93	

Table 6: Profiling data collected on SSSP (lbTHRES=32) ... 111	

Table 7: Warp execution efficiency (dbuf-shared) ... 112	

Table 8: Clauses of our workload consolidation compiler directive 127	

Table 9: Memory and core frequencies supported on K20m GPU 156	

xii

ABSTRACT

Over the last decade, many-core Graphics Processing Units (GPUs) have been widely

used to accelerate a variety of applications. Meanwhile, Intel has released its Xeon Phi

Coprocessor, which is equipped with more than fifty x86 cores, each supporting four

hardware threads. Despite their widespread use, many-core processors are still considered

relatively difficult to program, in that they require the programmer to be familiar with

both parallel programming and the hardware features of these devices.

Due to their massive computational powers, many-core processors have been

successfully used to parallelize a wide variety of dense matrices and vectors based

applications. These extensively investigated problems are mainly from linear algebra,

stencil computations, image processing and so on. However, many established and

emerging problems have not yet been fully explored. Some of these applications use

irregular algorithms/operations (e.g., dynamic programming), while others are based on

irregular data structures, such as graphs. It has been shown that these emerging

applications do exhibit certain degree of static and runtime parallelism, but are relatively

hard to parallelize.

My research focuses on addressing important issues related to the deployment of

emerging applications on many-core processors. In particular, we proposed efficient GPU

implementations for large-scale pairwise sequence alignment and integrated proposed

GPU kernels into a hybrid MPI-CUDA framework for CPU-GPU clusters. we also

targeted graph- or tree-based applications and proposed: (1) unifying programming

interfaces for many-core processors (2) runtime support for efficient execution on

xiii

irregular datasets and (3) compiler support for efficient mapping of applications onto

hardware. Finally, we conducted a comprehensive study of performance, memory

footprint and power consumption on various platforms and extended existing central

processing units (CPU) only or graphic processing units (GPU) only CNNs learning

methods to CPU-GPU cooperative ways. We also implemented a virtual memory and

integrated into Caffe to facilitate training large CNN models with limited GPU memory.

1

Chapter 1 Introduction

1.1 Introduction

Over the last decade, many-core graphics processing units (GPUs) have been widely used

to accelerate a variety of applications. Meanwhile, Intel has released its new Intel® Xeon

PhiTM coprocessors, which are equipped with more than fifty x86 cores, each supporting

four hardware threads. The peak double-precision performance of high-end many-core

devices from Nvidia, AMD and Intel are well above 1 teraflops. Due to heterogeneity in

both hardware features and application characteristics, it is often quite hard to choose the

hardware platform that can guarantee good performance to a given application. In

addition, performance optimization has increasingly become more hardware and

application specific and an optimization designed for a hardware platform might not work

at all on others.

Besides the increased complexity on the hardware side, the many-core era has also

lent to significant software challenges. Although many-core processors are commonly

used, they are still relatively difficult to program since they require programmers to be

familiar with both parallel programming and with the features and operation of these

hardware platforms [1]. To achieve good performance, the programmers need to tune

their code and sometimes even redesign their algorithms to better fit the underlying

hardware. This is not at all an easy job. This complexity is aggravated by the variety of

software stacks used by the various many-core platforms. For instance, Nvidia’s GPUs

adopt both CUDA and OpenCL as their programming interface. However, in order to

program the Intel Xeon Phi, one needs to master its customized OpenMP directives as

well as other programming tools like Intel TBB and Cilk. This increasing variety of

2

programming models does not make the use of many-core processors any easier, not to

mention that it also requires the programmer to become familiar with the debugging and

profiling tools associated with each programming interface.

Due to their massive computational powers, many-core processors have been

successfully used to parallelize a wide variety of dense matrix- and vector-based

applications. These extensively investigated problems come mainly from linear algebra,

stencil computations, image processing, and other applications with regular

computational and memory access patterns. However, many established and emerging

problems have not yet been fully explored. Some of these applications use less regular

algorithms/operations (e.g., dynamic programming), while others are based on irregular

data structures, such as graphs. Examples can be drawn from different application

domains such as bioinformatics, social networking, machine learning, electrical circuit

modeling, discrete event simulation, compilers, and computational sciences. It has been

shown that these emerging applications do exhibit a certain degree of static and runtime

parallelism, but are relatively hard to parallelize.

Among emerging applications, three categories of applications are eye-catching:

bioinformatics, graph processing and deep neural network based applications.

With the development of fast and cheap genome sequencing techniques,

bioinformatics plays a more and more important role in biology. From sequence

alignment to genome editing, from structural biology to personalized health, scientists are

using modern technology to produce a huge amount of data and powerful machines to

analyze these data. New algorithms to accelerate scientific discoveries are in continuous

development. A popular example is the Needleman-Wunsch algorithm, which is a widely

3

used global sequence alignment tool with applications in the analytics of complex

microbial communities and the inference of the tree of life, to name a couple of use cases.

The goal of this algorithm is to find the alignment of two strings (generally protein or

DNA) that maximizes a cost function.

Graph applications are characterized by irregular and unpredictable memory access

patterns, frequent control flow divergence, and a degree of parallelism that is known only

at runtime (rather than at compile time). In fact, the amount of parallelism within graph

and other irregular applications depends on the characteristics of the dataset, rather than

solely on its size. Yet, many established and emerging applications are irregular in nature,

being based on irregular data structures, such as graphs and trees. Graph and trees are

powerful representations used in many practical applications. Examples of such

applications include adaptive meshes, web search, networking, online marketing and

social network analysis. With the increased popularity of social and web network analysis,

there is an increasing demand for accelerating these applications.

Neural network is nowadays an important machine learning method. The history of

neural network research can be traced back to the second half of the last century and

neural networks were successfully applied to recognize handwritten checks and ZIP

codes in mail in the 90s. Before being used in classification, neural networks need to be

trained. Although the high computational requirements of the training phase continue to

be a key factor hindering the advancement of algorithms and applications based on neural

networks, recent advancements in software and hardware have dramatically promoted

their use in both academia and industry. Nowadays, neural network is a driving force for

computer vision, natural language processing and speech recognition. Based on recent

4

breakthroughs in these fields, many exciting applications and technologies like

autonomous driving are ready to change our world.

As we can see, these emerging applications are rapidly evolving and computational

power is the key to this revolution. Although hardware and software complexities in the

many-core era create a number of challenges for us to address, they also bring many

opportunities for us to explore.

1.2 Contributions

In this dissertation, we explore the design of effective software systems for many-core

platforms and make the following contributions:

• In the context of application-specific acceleration, we explore different GPU

implementations of the Needleman-Wunsch bioinformatics algorithm. Many

optimization methods discussed in this dissertation can be extended to algorithms

that have similar computation and memory access patterns and are used in other

domains (e.g., integral histogram used in computer vision and pattern

recognition).

• In the context of graph processing, we demonstrate that the design of easy-to-use

programming models and effective compiler and runtime techniques can hide the

hardware details from programmers and dramatically simplify the use of many-

core processors without sacrificing performance. We also explore a new hardware

feature for GPUs – called dynamic parallelism – suitable for graph processing and

other applications with irregular computation and memory access patterns. We

propose a novel method to reduce runtime overhead and improve hardware

5

resource utilization when using this feature. The techniques and insights discussed

in this dissertation are mostly transferable to many other irregular applications.

• We conduct a comprehensive study on the power behavior and energy efficiency

of neural networks on CPUs and GPUs. We propose novel hybrid CPU-GPU

solutions to reduce memory footprint and improve resource utilization, as well as

overall performance, of neural network computations. Our insights can facilitate

the design of high performance and energy efficient software solutions for neural

networks.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 provides some background

on the GPU architecture and the three types of applications covered in this dissertation.

Chapter 3 describes different implementations of the Needleman-Wunsch algorithm on

GPU. Chapter 4 describes our work on the deployment of graph and other irregular

computations on many-core processors. Specifically, this chapter includes (1) unifying

programming interfaces for many-core processors (Chapter 4.2), (2) runtime support for

efficient execution of applications on irregular datasets (Chapter 4.3) and (3) compiler

support for the efficient mapping of irregular applications onto parallel hardware

(Chapter 4.4). Chapter 5 describes our workload characterization and improvement on

training deep convolutional neural networks. Chapter 6 concludes our discussion.

6

Chapter 2 Background

2.1 GPU Architecture and Programming Model

Nvidia GPUs have evolved for four generations: the pre-Fermi, the Fermi, the Kepler and

Maxwell. In pre-Fermi and Fermi architectures, the GPUs comprise a set of Streaming

Multiprocessors (SMs) and GPUs with different compute capabilities are distinguished

by the numbers of SMs. Each SM contains a set of simple in-order cores. These in-order

cores execute instructions in a SIMD manner. Figure 1 shows the internal micro-

architecture of one SM in Fermi GPU. The “cores” are actually different SIMD lanes.

Multiple lanes (8 or 16) shared one set of instruction fetch unit (e.g. scheduler and

dispatcher). Usually, a SM has multiple instruction fetch units (2 or 4) and the number of

cores varies from 16 to 48. Starting from Kepler, the cores in Streaming Multiprocessors

have increased dramatically and are named after SMX. Figure 2 shows the comparisons

between SM of Fermi architecture and SMX of Kepler architecture. The new Kepler

architecture is design for high throughput as well as power efficiency. It slows down the

clock speed of SMX but integrates much more CUDA cores (192 v.s. 32/48), which

achieve 2x performance per watt. With more cores, both the bandwidth and capacity of

the register file in each SMX are doubled.

7

Figure 1: Fermi GPU architecture and the SM

GPUs have a heterogeneous memory organization consisting of high latency off-chip

global memory, low latency read-only constant memory (which resides off-chip but is

cached), low-latency on-chip read-write shared memory, and texture memory. GPUs

adopting the Fermi and Kepler architecture, such as those used in this work, are also

equipped with a two-level cache hierarchy. Judicious use of the memory hierarchy and of

the available memory bandwidth is essential to achieve good performances. In particular,

the utilization of the memory bandwidth can be optimized by performing regular access

patterns to global memory. In this situation, distinct memory accesses are automatically

coalesced into a single memory transaction, thus limiting the memory bandwidth used.

8

Figure 2: Kepler GPU architecture and SMX v.s. Fermi’s SM

The GPU can support thousands of parallel threads and the overhead of context

switch is pretty low. Thus, unlike CPU, which utilize large cache to achieve high

performance, GPU rely on massive parallel thread and fast context switch to high the

long memory access latency. This design makes GPU have higher density of ALU than

CPU and become the rising star in high performance computing.

However, programming massive parallel threads is hard, especially for GPUs. The

advent of CUDA has greatly increased the programmability of GPUs. With CUDA, the

programmers are required to write the kernel functions, which are executed on the GPUS

and the computation is organized in a hierarchical fashion, wherein threads are grouped

9

into thread-blocks. The CUDA provides several built-in thread identifiers and block

identifiers and assign them to different threads. Each thread-block is mapped onto a

different SM(X), whereas different threads are mapped to simple cores and executed in

SIMD units, called warps. The presence of control-flow divergence within warps can

decrease the GPU utilization and badly affect the performance. Threads within the same

block can communicate using shared memory, whereas threads within different thread-

blocks are fully independent. Therefore, CUDA exposes to the programmer two degrees

of parallelism: fine-grained parallelism within a thread-block and coarse-grained

parallelism across multiple thread-blocks.

2.2 Needleman-Wunsch Algorithm

The goal of the Needleman-Wunsch algorithm (NW) is to find the alignment of two

strings (generally protein or DNA) that maximizes a cost function. That cost function

consists of two parts. The first is a match and mismatch scoring matrix that gives the cost

of aligning matching or mismatching sequence elements (hereafter S(xi,yj)). For DNA

alignments, simple schemes such as rewarding matches (+4) and penalizing mismatches

(-5) are often used. For protein alignments, it is more common to use an empirical

scoring matrix [e.g., BLOSUM; 2]. The second part of the function is a cost for “gaps”:

i.e., regions of one sequence not aligned against regions of the other. Here, we will apply

a linear gap cost G. As input data, NW takes two sequences of length m and n. The

optimal alignment is then computed within a 2-D matrix M of size (m+1)*(n+1). Note

that this matrix can be virtual: there are linear space memory implementations of the

10

Figure 3: Calculation of matrix in NW

algorithm (e.g. Hirschberg’s algorithm [3]). Each element in M is then computed

according to equation (1).

(1)

Here, M(i,j) is the alignment score in the ith row and jth column of M. The first row

and column of M are initialized as gaps of increasing length [4]: once this initialization is

complete, the remaining positions can be computed given the values above them, to their

left and to their left diagonal (Figure 1).

It is apparent from this description that the memory and computing requirements of a

naïve implementation of the algorithm can be significant, as they scale as O(mn) (often

spoken of as O(n2)). For instance, in our experiments, we use database of roughly 25,000

unique 16S rDNA genes from the Ribosomal Database Project [5]. Performing all

possible pairwise alignments involves roughly 300 million comparisons. Moreover, the

computation itself is somewhat memory intensive: as equation (1) indicates, computing

each new element in the alignment matrix

requires three reads from memory and one

write to store the new value. On the other

hand, the computation is relatively trivial,

requiring three additions and a

comparison.

The NW algorithm can be broken into

two phases: (1) the computation of the alignment matrix M (described above, Figure 3),

and (2) the trace-back operation, which uses the alignment matrix to reconstruct the

(1, 1) (,)
(,) max (1,)

(, 1)

i jM i j S x y
M i j M i j G

M i j G

− − +⎧
⎪

= − +⎨
⎪ − +⎩

11

sequence alignment itself. Unless linear-space implementations of NW [3] are adopted,

the trace-back is a linear-time operation accounting for a small fraction of the overall

execution time. In chapter 4, the GPU-works mainly focus on the computation of the

alignment matrix.

2.3 Irregular applications

If the effective deployment of regular applications on many-core processors has been

extensively investigated, the one of irregular applications is still far from understood.

Irregular applications are characterized by irregular and unpredictable memory access

patterns, frequent control flow divergence, and dynamic parallelism at runtime (rather

than static parallelism at compile time). Different from regular applications, whose

parallelism is determined solely by the size of dataset, the amount of parallelism within

irregular applications depends on the characteristics of the dataset.

Graphs, as a powerful representation used in many practical applications (e.g.

networking, social networking, online marketing, webpage search, citation networks,

among others), are intrinsically irregular. In the past decades, the size of real world

datasets has rapidly increased, thus exposing higher amount of parallelism for many

graph algorithms. It has been shown that graphs used in real-world applications exhibit

significant topological differences. The topology of the graphs dictates the amount of

parallelism that can be extracted at runtime, thus affecting the performance of specific

GPU implementations. This heterogeneity makes it difficult to design a GPU

implementation of a graph algorithm that is optimal on a large variety of datasets.

From the point view of computational patterns, irregular loops and parallel recursion

are two important categories of irregular applications. Irregular loops are characterized by

12

an uneven work distribution across loops iterations. For example, nested loops where the

number of iterations of inner loops varies across the iterations of outer loops. The degree

of parallelism within irregular loops is typically data dependent and known only at

runtime. Parallel recursion is also considered as an important form of irregular

applications because recursive calls may spawn different amount of parallel work. As a

consequence of this uneven work distribution, simple parallelization code handling all the

recursive calls in the same way may lead to hardware underutilization.

2.4 Convolutional neural networks

At a high level, convolutional neural networks simulate the way in which human brains

process and recognize images. They belong to the family of multi-layer perceptrons

(MLP) [6]. A MLP is a multi-layer neural network consisting of an input layer, an output

layer and multiple hidden layers between the input and output layers. Each hidden layer

represents a function between its inputs and outputs that is defined by the layer’s

parameters.

Convolutional neural networks mainly consist of three types of layers: convolutional

layers (Conv), pooling layers (Pooling) and fully connected layers (FC). Each layer may

contain thousands to millions of neurons. A single neuron takes some inputs, computes

their weighted sum, and sends the output to the neurons in the next layer. In this way,

distinct layers apply different operations to their inputs and produce outputs for the layers

that follow. Figure 4 shows an example of convolutional neural network (LetNet [7]),

which consists of alternated convolutional and pooling layers followed by a few fully-

connected layers.

13

Figure 4: Example of Deep Convolutional Neural Network (LeNet)

Convolutional layers: These layers apply convolutions to the input with several

filters and add a bias term to the results. Very often, a nonlinear function (called

activation function) is also applied to the results. Convolutional layers exploit spatial

connectivity and shared weights. The parameters of a convolutional layer are reduced

dramatically compared to a typical hidden layer of a MLP. Convolutional layers are the

most computational intensive layers in CNNs.

Pooling layers: These layers perform a nonlinear down-sampling operation on the

input. They partition the input into a set of sub-regions and output sampled results from

these sub-regions. Based on their sampling method, pooling layers can be categorized

into: maximum pooling, average pooling and stochastic pooling. Pooling layers

progressively reduce the amount of parameters as well as control model over-fitting.

Pooling layers are usually placed between two convolutional layers.

Fully connected layers: Unlike in convolutional layers, neurons in FC layers have

full connections to all output from the preceding layers. As a consequence, a FC layer has

many more parameters than a convolutional layer. Nonetheless, since convolution

operations are replaced by multiplications, fully connected layers require less

computational power.

14

Using CNNs for machine learning tasks involves three steps: (1) designing the CNN

architecture, (2) learning the parameters of the CNN (also called “training”), and (3)

using the defined CNN for inference. Since CNNs are back-propagation learning

algorithms, their learning phases can be divided into: forward propagation, backward

propagation and weight update. In the forward propagation phase, input data are sent to

the neural network to generate the outputs. In the backward propagation phase, the errors

between the standard outputs and the produced outputs are propagated in a backward

fashion to compute the errors in each layer. These errors (also called gradients) in each

layer will be used in every weight update. However, for inference, the parameters of the

networks are given and there is only forward propagation to produce the prediction.

15

Chapter 3 Bioinformatics Applications on CPU-GPU Clusters

3.1 Motivation

The pairwise sequence alignment algorithms, both local and global [4, 8], are in many

ways the core technology for the study of biological sequences. They have key roles in

multiple sequence alignment [9], phylogenetics[10], and molecular evolution studies [11].

It adopts the dynamic programming approach to alignment which is O(n2) in time

complexity. The biologists often wish to make millions or even billions of such

comparisons [12], which are extremely time consuming. To reduce the computational

complexity, some heuristic methods are proposed to improve the basic dynamic

programming approach. Examples can be found in sequence database search programs

such as FASTA [13] and BLAST [14, 15] and various forms of genome assembly

algorithms [16, 17]. Such acceleration is useful in some cases. However, these heuristics

depend on the assumption that the vast majority of the sequence pairs being compared

have essentially no similarity and that, once this fact has been demonstrated for a

sequence pair, the computation of the alignment itself is unnecessary.

Increasingly a second class of problem is becoming relevant. In this case, there is a

requirement to compare very large numbers of sequences that are all evolutionarily

related. As a result, it is not possible to omit the computation of any of the alignments,

making approaches such as that of BLAST inappropriate. One example is the

computation of very large multiple sequence alignments for analyses such as inference of

the “tree of life” [18-20]. A similar problem motivates my work in this thesis, namely the

analysis of complex microbial communities through the sequencing of a particular

microbial gene, the 16S rDNA gene. Biologists have discovered that many microbes

16

cannot be cultured under laboratory conditions but that it is possible to assess their

presence through the direct sequencing of the DNA in an environment [21-25]. To

compare microbial communities across environments, it is helpful to survey a single gene:

the 16S gene is useful in this regard as it is essentially ubiquitous across prokaryotic life.

However, the sequencing of the gene is only a first step: it is then necessary to compare

the sequences generated to each other and to other known 16S sequences to assess the

taxonomic diversity present in the sample. As there are hundreds of thousands of 16S

sequences in sequence databases and tens of thousands of unique sequences among those

[5], this analysis can be daunting.

The problem as stated is clearly highly parallel. To address this problem, the

massively parallel computing potential of GPUs is brought in. General-purpose graphics

processing units (GPGPUs) are advancements of hardware originally developed to

accelerate complex graphical rendering for applications like 3D gaming. However, the

state-of-the-art GPUs can be programmed for various general applications. The

programming interfaces include the CUDA framework proposed by Nvidia and OpenCL,

which is an open standard for parallel programming heterogeneous system. As GPGPUs

are increasingly becoming part of HPC clusters, how to levering GPUs in a distributed

clusters for large-scale sequence alignment becomes an emerging research problem.

3.2 Related Work

3.2.1 Early Works on Sequence Alignments

To study the biological sequences, pairwise sequence alignment algorithms are heavily

used in various applications (e.g. sequence database search). These algorithms can be

17

categorized into (1) local sequence alignment (e.g. Smith-Waterman algorithm [8]) and

(2) global sequence alignment (e.g. Needleman-Wunsch [4]). SW is used when the

optimal common subsequence between two sequences is needed to identify. NW, on the

contrary, is the algorithm to align two sequences.

Both SW and NW are based on dynamic programming. The algorithms start with an

initialized matrix and the calculation is performed from left-top to right-bottom. Due to

the computation intensive nature of this approach, some heuristic solutions are proposed

to address similar problem, at the cost of reducing accuracy. FASTA [13] and BLAST

[14, 15] are two famous methods among those heuristic solutions.

3.2.2 Acceleration of Bioinformatics Application on GPUs

In recent years GPUs and other accelerator devices have been widely used to accelerate a

variety of scientific applications from many domains [26-28]. In particular, a number of

biological applications, including BLAST [29], hidden Markov models [30-32] and

structure comparisons [33], have been ported to GPU or FPGA architectures. Among

GPU-enabled HPC Bioinformatics software, CUDA-BLASTP [34] is designed to

accelerate NCBI BLASTP for protein sequence databases search. MSA-CUDA [35] is a

parallel multiple sequence alignment program accelerating all three stages of ClustalW [9]

processing pipeline. In next-generation sequencing technologies, there are already

different proposes [36-38] using GPUs to accelerate various applications. Most relevant

to my work in this thesis are several sequence alignment algorithms implemented on

GPU [27, 39-41]. In chapter 3, we will provide more background on one of these: the

NW implementation in the Rodinia benchmark suite [27].

18

3.2.3 Sequence Alignments on GPUs

Among the alignment implementations, Liu et al., [42] present an optimized sequence

database search tool based on the Smith-Waterman (SW) local alignment algorithm (in

contrast to the NW global alignment problem considered here). Compared to other

implementations [39, 43, 44], their tool provides better performance guarantees for

protein database searches. Li et al., [45] offer a GPU acceleration of SW intended for a

single comparison of two very long sequences; we focus on accelerating many pairwise

alignments of shorter sequences. We are interested in the NW problem, which rather than

being used for database search is more commonly applied to situations where all possible

pairwise alignments are required (e.g., alignments for phylogenetics or metagenomics as

described above). In their first phase (computation of the alignment matrix), NW and SW

share similar computation patterns, so optimization techniques can be reused between the

two methods.

There are also distributed CPU-based implementations of NW: for example

ClustalW-MPI [46] aligns multiple protein, RNA or DNA sequences in parallel using

MPI. Biegert et al., [47] have introduced a more general MPI bioinformatics toolkit in the

form of an interactive web service that supports searches, multiple alignments and

structure prediction. Our tool differs from these in combining MPI and CUDA to allow

deployment on CPU-GPU clusters where multiple GPUs may be employed

simultaneously.

19

3.3.4 Rodinia-NW: Needleman-Wunsch on GPU

The Rodinia benchmark suite [27] offers a GPU parallelization of NW (hereafter,

Rodinia-NW), that is used as baseline in this thesis. Rodinia-NW operates as follows.

Since each element in the alignment matrix depends on its left-, upper- and left-upper-

neighbors, a way to exploit parallelism is by processing the matrix in minor diagonal

manner. Each minor diagonal depends on the previous one, thus leading to the need for

iterating over minor diagonals. However, at every iteration, all the (independent)

elements in the same minor diagonal line can be calculated simultaneously. If the matrix

is laid out in global memory in row-major order, the involved memory access patterns are

uncoalesced, potentially leading to performance degradation. Since each element in the

alignment matrix is used for calculating three other elements, performance can be

improved by leveraging shared memory and dividing the alignment matrix in square tiles

(each of them fitting the shared memory capacity). Rodinia-NW performs tiling and

exploits two levels of parallelism: (i) within each tile elements are processed in minor

diagonal manner, and (ii) different tiles in the same minor diagonal line can also be

processed concurrently by distinct thread-blocks. Threads within the same thread-block

manipulate the data and store elements in shared memory temporarily. After the

computation of a tile completes, all of the data are moved to global memory using

coalesced accesses. For square alignment matrices and tiles of width N and T,

respectively, Rodinia-NW’s parallel kernel is invoked times (once for each minor

diagonal of tiles). After carefully analyzing Rodinia-NW, we found the following

limitations.

20

First, Rodinia-NW is designed for a single pairwise comparison. Applications such as

those above require hundreds to thousands of comparisons. As such, they introduce a

second exploitable level of parallelism, especially as each pairwise comparison is

independent. Moreover, the sequences generally differ in length but Rodinia-NW only

supports sequences of equal length, requiring padding to handle more general cases.

Second, Rodinia-NW requires three data transfers for each alignment, an approach

that can be improved. Before kernel launch, the alignment matrix is initialized (with the

gap information) on the CPU. Next, alignment matrix and score matrix are copied from

CPU to GPU. The alignment matrix is processed on the GPU, and finally copied back to

the CPU. We note that the two copies of the alignment matrix are O(nm) each. However,

the first data transfer of the alignment matrix can be avoided by initializing its 1st row

and 1st column directly on the GPU.

Finally, CUDA does not support global barrier synchronization among thread-blocks

within a parallel kernel (an implicit global synchronization takes place at the end of each

kernel execution). Since in Rodinia-NW each tile is mapped to a thread-block and tiles

must be processed in diagonal strip manner, a global synchronization among thread-

blocks operating on the same diagonal is required before proceeding to the next diagonal.

This is accomplished by invoking multiple kernel launches from the host side. This

approach has two limitations: (i) each kernel launch has an associated overhead (that

depends on the GPU device), and (ii) the GPU is underutilized by kernel launches that

process small numbers of tiles (i.e., those corresponding to the first and the last

diagonals).

21

3.3 Design of GPU-workers

In this Section we describe three alternative implementations of multiple pairwise

alignments using NW on GPUs: TiledDScan-mNP, DScan-mNP and RScan-mNP [48-

50]. All these implementations, exemplified in Figure 4, Figure 5 and Figure 6, aim to

overcome the limitations pointed out above.

3.3.1 TiledDScan-mNW: Multiple alignments with tiling

The first method (TiledDScan-mNW) is a directed extension of Rodinia-NW to multiple

pairwise alignments. This approach still uses tiling and operates in diagonal strip manner,

performing multiple kernel invocations to compute the alignment matrices. However, for

each kernel invocation, multiple alignment matrices are concurrently processed using

different thread-blocks (and SMs). This is illustrated in Figure 5, where we concurrently

perform three pairwise comparisons: (seq1, seq2), (seq1, seq3) and (seq1, seq4). In the first

iteration, the top-left tiles of the three matrices are processed in parallel by three thread-

blocks, and thus mapped onto three streaming multiprocessors: SM1, SM2 and SM3. In

the second iteration, the tiles of the second minor diagonal of the three matrices are

processed in parallel by six thread-blocks, and thus mapped onto streaming

multiprocessors SM1-SM6. Note that, for m pairwise comparisons, the number of kernel

invocations of TiledDScan-mNW is reduced by a factor m (as compared to Rodinia-NW);

for each kernel call, the number of thread-blocks is increased by a factor m. This has two

advantages: (i) a limited kernel invocation overhead, and (ii) an improved GPU

utilization. Execution configurations with a large number of threads allow not only

exploiting all the SMs and cores available on the GPU, but also hiding the global memory

22

Figure 5: TiledDScan-mNW and the mapping to GPU cores and SMs

access latencies (and NW is a memory-intensive application). Being an extension of

Rodinia-NW, TiledDScan-mNW retains its advantages: regular computational patterns

and coalesced memory access patterns when storing alignment data from shared memory

to global memory.

3.3.2 DScan-mNW: Single-kernel diagonal scan

TiledDScan-mNW still requires multiple kernel invocations to perform m pairwise

alignments. Even if the parallelism within each kernel call is improved by a factor m

compared with Rodinia-NW, some kernel invocations still exhibit limited parallelism

(and limited opportunity to hide memory latencies). Our second implementation –

DScan-mNW – performs a diagonal scan with a single kernel call. As illustrated in

Figure 6, in this case each alignment matrix is assigned to a thread-block (and mapped

23

Figure 6: DScan-mNW and the mapping to GPU cores and SMs

onto a SM). No tiling is performed. The computation iterates over diagonals. For each

diagonal, every element is processed by a thread (and mapped onto a core).

To limit the number of expensive accesses to global memory, the computation is fully

performed in shared memory. The alignment matrix is stored in row-major order in

global memory and in minor diagonal order in shared memory. According to equation (1),

at each iteration three diagonal lines are required: the first two diagonal lines cache

previous data and the third one contains the newly computed elements. Once computed,

this third line can be copied from shared to global memory. At that point, the first

diagonal line can be discarded and the shared memory reused for the next iteration. To

summarize, the matrices are created in shared memory and moved to global memory

diagonally. The main disadvantage of this approach is the uncoalesced memory accesses

required to store diagonal data to global memory. We found that the latencies of such

irregular access patterns can be effectively hidden by using large numbers of threads.

The computational pattern of our DScan-mNW is similar to the SW intra-task

parallelization proposed by Liu et al. [42]. However, [42] avoids uncoalesced memory

24

Figure 7: RScan-mNW and of the mapping to GPU cores and SMs

accesses by storing the alignment matrix in global memory in minor diagonal order. We

found that, when using large thread-blocks to hide memory latencies (e.g., 512

threads/block), the overhead due to uncoalesced memory access patterns is reduced to 10%

and 7% of the execution time on Fermi and Kepler GPUs, respectively (the exact

percentage depends also on the clock-rate of the memory system). On the other hand,

storing the alignment matrix in row-major facilitates the trace-back operation (which is

not considered in [42]) in two ways: first, it avoids the need for complex index translation;

second, the more regular data layout leads to better caching properties.

3.3.3 RScan-mNW: Row scan via single CUDA core

Our third method – RScan-mNW – uses a fine-grained matrix-to-core mapping and a

row-scan approach. First, each alignment matrix is computed by a single GPU core.

Second, to allow regular compute and memory access patterns, each alignment matrix is

computed row-wise (rather than diagonal-wise). This computational pattern is illustrated

25

in Figure 7.

This method leverages shared memory in order to allow data reuse and minimize the

global memory transactions. The parallel kernel iterates over the rows of the alignment

matrices. At every iteration, only two rows per matrix must reside in shared memory: the

previously computed one and the one containing newly computed elements. Only the

left-most element of the new row must be loaded from global memory; for the rest, the

computation happens solely in shared memory. Once the new row has been computed, it

is copied from shared to global memory. The previously computed row can be discarded,

and the new one can be cached for use in the next iteration. The kernel has two phases:

computation and communication. In the computation phase, the threads within a thread-

block operate fully independently: each thread computes the data corresponding to the

row of an alignment matrix and stores them in shared memory. In the communication

phase, threads belonging to the same thread-block cooperate to transfer row data from

shared to global memory in a coalesced fashion (that is, each alignment matrix is

transferred cooperatively by multiple threads). In case of very long sequences, rows are

split into sections so as to fit into shared memory. The size of these sections is

configurable. Large sections require more shared memory, which in turn limits the

number of active threads on each SM. Small sections (e.g. sections with less than 32

elements) lead to warp underutilization in the communication phase, which in turn can

hurt the performance. The usage of shared memory is a major concern in the kernel

configuration process. The per-block shared memory can be calculated using the

following formula:

shmem = 3*sizeof(int)*BLOCK_SIZE*SECTION_SIZE

26

Each thread stores three sets of data: the sequence data and two sections of the

alignment matrix. Each thread-block performs BLOCK_SIZE pairwise alignments using

sections of size SECTION_SIZE. By setting the BLOCK_SIZE and the SECTION_SIZE to

32, we use 12KB of shared memory with no warp underutilization. With this setting, each

SM can concurrently run up to four thread-blocks.

The advantages of this approach are twofold. First, the computational pattern is

extremely regular: unlike diagonals, rows are all of the same size. Second, data transfers

between shared and global memory are naturally coalesced. The main drawback to this

approach is that the parallelism is limited by the GPU memory capacity. For example, if

the sequences to be compared are of length 2,000 and the alignment matrices contain 4-

byte integers, then each matrix will be of size 32MB. To fully utilize the cores of typical

GPUs (say 480 cores), we should allow 480 parallel pairwise comparisons, requiring a

total of roughly 15GB of memory. This number considerably exceeds the 1-5GB of

memory present on most GPUs. Therefore, on long sequences RScan-mNW will tend to

underutilize the GPU resources. On the other hand, this approach is very promising for

short sequences (e.g. <500). For long sequences, an alternative optimization would be to

break the alignment matrices into smaller strips to reduce the memory footprint, and use

dual-buffering to move previously computed strips to the CPU while computing new

ones. Finally, we note that certain scoring schemes allow for linear memory NW

algorithms of minimal complexity: under these limited and less-commonly used schemes,

highly efficient parallelism could be achieved using RScan-mNW.

The computational pattern of our RScan-mNW is similar to the SW inter-task

parallelization proposed by Liu et al. [42]. However, their proposal does not use shared

27

memory in the kernel and adopts a different data layout in global memory. Specifically,

to avoid uncoalesced global memory accesses, Liu et al. place data corresponding to

different alignment matrices into continuous global memory space. For instance, the ith

element of global memory is from the ith alignment matrix, while the (i+1)th element is

from the (i+1)th alignment matrix. This memory layout leads to poor data locality during

the trace-back phase. As mentioned above, trace-back is not considered in [42], but is a

necessary operation in the problem we consider.

28

3.4 Experimental Evaluation

In this section, we present two sets of experiments: (i) single GPU experiments, and (ii)

cluster experiments. The former are meant to evaluate our GPU implementations of

multiple sequence alignment with NW and the latter are to evaluate our distributed

framework. Particularly for the cluster the experiments, we focus on the scalability issues.

3.4.1 Experimental setup

Hardware setup – Single GPU experiments have been performed on a variety of low-

end and high-end GPUs, listed in Table 1.

Software setup – The CUDA 5.0 driver and runtime are installed in all the machines

used. The OS in use is CentOS5.5/6 with g++4.1.2. Each data point represents the

average across 3 executions.

Dataset – Our reference dataset consists of about 25,000 unique 16S rDNA genes

from the Ribosomal Database [5]. The sequences are on average 1,536 bases long.

3.4.2 Performance on single GPU

Our first set of experiments is meant to evaluate our GPU implementations and compare

them with Rodinia-NW. In Chapter 3.3.2, we noted two limitations in Rodinia-NW:

unnecessary memory transfers from CPU to GPU and inefficiencies in the computational

kernel and its invocations. Below, we will show how we improve performance with

respect to both limitations.

29

 Memory Transfers: As explained in Chapter 3.3.2, Rodinia-NW initializes the

alignment matrix on CPU and copies it to GPU. Also, to simplify memory access during

computation, it creates a temporary substitution score table of size m x n during CPU

initialization. For problems of the size considered, data transfer consumes considerable

amount of time. An obvious optimization is to move the initialization from CPU to GPU.

In addition, by omitting the creation of the temporary substitution table, more alignment

matrices can be accommodated on the GPU, thus allowing for increased parallelism. In

Figure 8 we show the effect of these optimizations on different GPUs. In all experiments,

64 pairwise alignments are performed. The optimized version initializes the alignment

matrices on GPU and avoids the initial CPU-to-GPU data transfer. On top of this, the

optimized + pinned memory version uses pinned memory. As can be seen, the proposed

memory optimizations lead to a 5-10% and a 20-25% decrease in execution time on low-

end and high-end GPUs, respectively. In addition, the combination of the memory

Table 1: Characteristics of the GPUs used in our evaluation

GPU Type Values

Low-end GPUs

Quadro 2000
4 SM x 48 cores

~1 GB Global memory

GTX 460
7 SM x 48 cores

~1 GB Global memory

GTX 480
15 SM x 32 cores

~1.5 GB Global memory

High-end GPUs

Tesla C2050
14 SM x 32 cores

~2.6 GB Global memory

Tesla C2070/C2075
14 SM x 32 cores

~5 GB Global memory

Tesla K20
13 SM x 192 cores

~4.7 GB Global memory

30

Figure 8: Evaluation of memory optimizations on Rodinia-NW

optimization with the use of pinned memory leads to a decrease in execution time in

excess of 30% and 50% on low-end and high-end GPUs, respectively.

Kernel computation: We now focus on the performance of our compute kernels. Our

analysis has two goals: (i) evaluating the performance improvements over Rodinia-NW,

and (ii) devising criteria for selecting the optimal GPU implementation depending on the

underlying GPU device. In Figure 9 and 10, we show the relative speedup in kernel

computation time of DScan-mNW and TiledDScan-mNW over Rodinia-NW (the

speedup is computed as the ratio between the compute time of Rodinia-NW and that of

our GPU implementations). We performed experiments on all available GPUs and varied

the number of pairwise comparisons performed from 8 to 64. Given its fine-grained

alignment-to-core mapping, on these datasets RScan-mNW underutilizes the GPUs and

reports poor performance. This, in general, holds when comparing long sequences on

GPUs with 1-5GB device memory. Therefore, we focus on the other schemes.

31

Figure 9: TiledDScan-mNW Kernel speedup over Rodinia-NW

Figure 9 reports the speedup of TiledDScan-mNW over Rodinia-NW. Note that

TiledDScan-mNW performs fewer kernel calls (and therefore, has less kernel overhead)

and involves more per-kernel computation (thus leading to increased parallelism). This

motivates the performance improvement achieved by TiledDScan-mNW over Rodinia-

NW. Note that the speedup increases with the computational power of the GPU (from

1.2x on the Quadro2000 to 2x on the K20). In fact, the increased parallelism in the

TiledDScan-mNW kernel can be better serviced by GPUs with more SMs and compute

cores.

As can be seen in Figure 10, DScan-mNW also outperforms Rodinia-NW on all

devices and datasets. Its performance is also generally better than that of TiledDScan-

mNW, except on Tesla C207x cards. It is somewhat surprising that our approach does not

show substantial speedup over Rodinia-NW on this device. It must be said that NW is an

integer application, and Tesla GPUs are optimized for larger memory capacity (5GB vs.

32

Figure 10: DScan-mNW Kernel speedup over Rodinia-NW

1GB) and improved support for double precision floating point operations, but have a

reduced clock rate (1.15GHz vs. 1.4GHz in GTX 480 cards, for example). We believe

that the high number of uncoalesced memory accesses performed by DScan-mNW may

motivate the poor performances on Tesla C207x cards, which have a slower memory

clock.

Figure 11 reports the speedup of RScan-mNW over Rodinia-NW on sequences of

different lengths. The number of pairwise comparisons performed in each experiment is

reported on top of each bar (all experiments have been configured so to use 70% of the

global memory capacity). As mentioned in Chapter 3.3.3, in RScan-mNW each core

computes an alignment matrix: in order to fully utilize the computational resources of the

GPU, RScan-mNW needs to perform a large number of parallel sequence alignments.

This leads to pressure on the global memory capacity: for long sequences, the GPU

global memory becomes the bottleneck, and the performance of RScan-mNW is

penalized. RScan-mNW’s performance improves when the length of the sequence

33

Figure 11: Kernel speedup of RScan-mNW on sequences of various lengths

decreases: in the case of shorter sequences, the global memory can accommodate more

alignment matrices, thus leading to higher utilization of the GPU cores. In particular, on

512-base sequences, RScan-mNW gives a speedup over Rodinia-NW up to a factor 5x.

In general, Figure 9, 10 and 11 show that DScan-mNW and TiledDScan-mNW are

preferable to RScan-mNW on the 1,536-base sequences in the 16S rDNA gene dataset. In

addition, these results show that our methods overcome inefficiencies of Rodinia-NW,

and suggest that DScan-mNW is preferable on all devices except Tesla C207x. On such

cards, TiledDScan-mNW provides better performance. This finding will be used to

configure our GPU-workers. As next step, we want to determine how to size the amount

of work that each GPU-worker should pull from the GPU-dispatcher to operate at full

capacity. In fact, we want to fully utilize the GPUs present in the system. The number of

pairwise comparisons that can be performed concurrently on each GPU is limited by its

memory capacity. We configured each GPU to operate with its global memory 75% full.

34

Figure 12: Speedup of DScan-mNW over an 8-threaded CPU implementation

For the sequence lengths being considered, this leads to 79, 79, 119, 208, 417, and 372

parallel alignments on Quadro2000, GTX460, GTX480, Tesla C2050, Tesla C207x and

K20 GPU, respectively.

 Figure 12 shows the speedup reported by Dscan-mNW over an 8-threaded OpenMP

implementation running on the 8-core CPU on Node-4 (see Table 2). The numbers on

each bar represent the throughput in number of pairwise alignments/sec. For each GPU,

we performed three experiments: one using unpinned memory, one using pinned memory,

and one using double buffering. We first define an “optimal batch size” bSIZE for a

particular GPU to be the number of simultaneous alignments that can be performed given

the device memory (as above). For the first two versions, we ran analyses consisting of a

number of sequences equal to 3 bSIZE in order to effectively time the computation. For

double buffering, only half of the GPU memory performs alignments at one time, so 6

batches of size bSIZE/2 were timed. The performance was measured as the number of

sequence pairs compared per second.

35

As can be observed from Figure 12, switching to pinned memory offers a gain of

roughly 1.6x, consistent with previous findings [51]. Not using the OS’s virtual memory

system could in principle limit the number of sequences that can be processed

concurrently. However, our observation is that problem sizes are instead generally

limited by the amount of physical memory on the GPU, so we do not consider this CPU-

based memory limitation to be a significant disadvantage. The application of double-

buffering along with pinned memory offers an additional average 1.2x speedup, with the

exception of the GTX480 system, which does not show significant speedup. We

speculate that the reason for this lack of improvement is that the GTX480 has a more

restricted handling of CUDA streams, which does not allow the same level of

overlapping of memory transfers and kernel computations possible on other devices. In

general, it can be observed that even cheap low-end GPUs (like the GTX460 and

GTX480) offer throughput in the order of 200-250 pairwise alignment/sec.

3.5 Other Applications with Similar Computation Pattern

In many computer vision tasks ranging from image search to multi-target tracking,

feature probability maps represented as histograms play a critical role in the overall

computation. The integral histogram for images is an efficient preprocessing method for

speeding up diverse computer vision algorithms. Similarly to the Needleman-Wunsch

algorithm, the integral histogram computation follows a dynamic programming pattern.

We have explored different techniques to efficiently compute integral histograms on

GPU and propose two GPU implementations: CW-TiledHV and WF-Tiled.

36

(a) Tiled horizontal scan (b) Tiled vertical scan

Figure 13: Tiled horizontal-vertical scan (CW-TiledHV)

Cross-wave Tiled Horizontal-Vertical Scan (CW-TiledHV): As represented in

Figure 13, the CW-TiledHV approach operates as follows. First, each of the b matrices of

size (h x w) corresponding to the different bins is divided into tiles. Each tile must be

small enough to fit in shared memory and large enough to contain sufficient amount of

data for computation work. In our implementation, we use squared tiles. The processing

is divided into two stages: the horizontal scan (Figure 13(a)) and the vertical scan (Figure

13(b)). In each stage, the computation is performed on strips with the width of the tile. A

kernel call operates on a strip; the computation is performed strip by strip until the whole

matrix has been processed. The total number of image tiles or blocks processed is given

by:

Tiles = (WImage/WTile) x (HImage/WTile)

In horizontal scan, the number of vertical strips is equal to:

VStrips = WImage/WTile

and during the vertical scan the number of horizontal strips is equal to:

37

Figure 14: Data flow of CW-TiledHV implementation

HStrips = HImage/WTile

We expect the image sizes to be evenly divisible by the tile sizes other wise the image

is appropriately padded. In the kernel implementation, each tile is assigned to a thread-

block, and each row/column is assigned to a thread. Shared memory is used to allow

efficient and coalesced memory accesses. Threads belonging to the same block push the

wave-front forward (either from left to right or from up to bottom in Figure 13). Since

each thread-block consists of warps, in order to avoid thread divergence within warps and

GPU underutilization, the tile size must bet set to be a multiple of the warp size (32).

Wave-front Tiled Scan (WF-Tiled): The use of separate horizontal and vertical scan

kernels in the CW-TiledHV method has a drawback: it causes each tile to be transferred

multiple times between global and shared memory. In fact, in both scan kernels, each tile

is first moved from global into shared memory, then processed, and then moved back to

global memory. This fact is exemplified in Figure 14. As a consequence, combining the

horizontal and vertical scans into a single kernel will allow accessing global memory

only twice per tile (once in read, and once in write mode). Actually, for the horizontal

scan, the data in each row rely on the data on their left; for the vertical scan, the data in

each column rely on the data on their upper position. This data access pattern is quite

38

Figure 15: WF-Tiled implementation

similar to the Needleman-Wunsch algorithm in this chapter. Therefore, we can arrange

the computation in a similar fashion, and compute the integral histogram using a front-

wave scan. This approach, that we call Wave-front Tiled Scan (WF-Tiled), is shown in

Figure 15. Similarly to the CW-TiledHV implementation, we divide the h x w matrix into

different tiles. Again, each tile should be small enough to fit in shared memory, and large

enough to contain non-trivial amount of computation work. All the tiles lying on the

same diagonal line are considered part of the same trip and processed in parallel. Within

the parallel kernel, each thread block will process a tile, and each thread will process a

row (during horizontal scan) and a column (during the vertical scan) of the current tile.

The tricky part of this implementation is the following: after the horizontal scan, the last

column of each tile (that would otherwise be overwritten during the vertical scan) must

be preserved. In fact, the last column must be used in the horizontal scan of the next strip.

This can be easily achieved by storing the extra data in global memory (the additional

39

memory requirement correspond to a single array of h elements). By eliminating

unnecessary data movements between shared and global memory, the WF-Tiled method

can potentially be preferable to the CW-TiledHV.

40

Chapter 4 Irregular Applications on Many-Core Processors

Parallelization of regular of regular applications (such as those operating on dense

matrices and vectors) on many-core processors has been extensively investigated.

However, parallelization of irregular applications continues to be challenge. Irregular

applications are characterized by irregular and unpredictable memory access patterns,

frequent control flow divergence, and a degree of parallelism that is known only at

runtime (rather than at compile time). In fact, the amount of parallelism within irregular

applications depends on the characteristics of the dataset, rather than solely on its size.

Yet, many established and emerging applications are irregular in nature, being based on

irregular data structures, such as graphs and trees.

This chapter focuses on addressing important issues related to the deployment of

irregular computations on many-core processors. Specifically, my contributions are in

three directions:

(1) Unifying programming interfaces for many-core processors. We proposed a

compilation and runtime framework that generates efficient parallel implementations of

generic graph applications for multi-core CPUs, Nvidia GPUs and Intel Xeon Phi

coprocessors. Applications are implemented with a unified, platform-agnostic

programming API and then our source-to-source compiler performs platform-specific

code transformations and optimizations.

(2) Runtime support for efficient execution of applications on irregular datasets.

We analyzed the computational patterns of several irregular applications and found that

the dynamic nature of the extracted parallelism makes it impossible to find an optimal

41

solution at compile time. So we proposed a runtime system able to dynamically transition

between different implementations with minimal overhead, and investigated heuristic

decisions applicable across algorithms and datasets.

(3) Compiler support for efficient mapping of applications onto hardware. We

proposed different parallelization templates for efficient code generation across various

irregular applications and GPU architectures. In addition, we proposed a compiler-

assisted workload consolidation method to enhance the efficiency of kernels with

dynamic parallelism on GPUs.

4.1 Related Work

Irregular applications are characterized by irregular and unpredictable memory access

patterns, frequent control flow divergence, and a degree of parallelism that is known only

at runtime (rather than at compile time). In fact, the amount of parallelism within

irregular applications depends on the characteristics of the dataset, rather than solely on

its size. Yet, many established and emerging applications are irregular in nature, being

based on irregular data structures, such as graphs and trees.

There has been a rich body of work on the design of parallel algorithms to solve

various graph problems (e.g., breadth-first-search [52-54], shortest paths [55, 56],

minimum spanning trees [52, 57, 58], connected components [59-63]) on many-core

platforms. Recent works (i.e. Parallel BGL [64], ParGraph [65], STAPL [66] and

GraphLab [67]) have proposed parallel graph libraries for multi-core processors and

distributed systems. For single node system, GraphChi [68] efficiently computes large

graphs on a single CPU node. Green-Marl [69] offers a domain-specific language for

42

graph analytics [70-72]. The Galois system [73, 74] includes a programming model and a

runtime component to dynamically extract parallelism from irregular applications by

leveraging speculative parallelization.

 As GPUs have become more general-purpose, the interest of research community has

moved toward effectively deploying irregular applications on these many-core platforms.

In particular, there have been several efforts [75-81] focusing on the acceleration of graph

processing algorithms on Nvidia GPUs. Harish and Narayanan [75] were the first to

perform this operation; their proposed implementations, however, are pretty basic and

ineffective on sparse graphs used in practice. Better results have been reported through

subsequent efforts, which focused on specific algorithms (breadth-first search [76, 77, 80],

inclusion-based points-to analysis [78], strongly connected components [79, 82]). The

optimizations introduced by these proposals are somehow orthogonal to our work, and

can be integrated with it. Because of their higher generality, the proposals closest to ours

are those by Hong et al [80, 81]. Hong et al. [80] proposes a virtual warp-centric

programming model to allow datasets with different characteristics to more efficiently

use the GPU hardware. This idea can be integrated with our work. Hong et al. [81]

considers an adaptive solution that alternates CPU and GPU execution. We, on the other

hand, focus on the automatic selection of different GPU solutions and on the conditions

that make this beneficial.

Mapgraph [83], VertexAPI2 [84] and Gunrock [85] are GPU-targeting tools for graph

analytics, not compiler frameworks to generate multiple GPU code variants for generic

graph. They provide library implementations of specific graph algorithms and APIs to

customize graph analytics. Users still require hand-coding in CUDA/OpenCL and

43

implementing predefined callback functions (gather, scatter). TOTEM [86] and Medusa

[87] are more general programming frameworks for graph algorithms operating on static

datasets (i.e., they do not include support for dynamic memory operations). Our work

aims to automatically generate different code variants for GPU and Intel Phi devices

starting from a platform-agnostic interface and to also support dynamic datasets. Unlike

TOTEM, we do not consider graph partitioning across devices and cooperating CPU-

GPU execution. Medusa also explores different graph storages (e.g., edge-oriented

storage), graph-aware buffer schemes and multi-GPU execution. These mechanisms,

however, can be incorporated in our framework.

Recent studies have analyzed the strengths and limitations of Nvidia’s dynamic

parallelism (DP). Although the effectiveness of dynamic parallelism has been

demonstrated on certain applications (such as clustering algorithms [88], computation of

the Mandelbrot set [89] and a particle physics simulation [90]), it has been shown that,

because of the non-negligible overhead of this feature, the naïve use of DP can actually

slow down the performance [91-93]. Wang et al. [93] have performed a characterization

of DP-based implementations of unstructured applications, focusing on the analysis of

their control flow behavior, their memory access patterns and the DP overhead. Yang and

Zhou [91] have proposed a compiler framework to support nested thread-level

parallelism without using DP. Their solution, which leads to spawning a massive number

of threads, does not apply to recursive computations and is less effective on applications

that exhibit high degrees of thread-level parallelism even before the proposed code

transformations.

44

In our work, we propose code parallelization templates – with and without DP – to

facilitate the efficient execution of irregular nested loops on GPUs. Besides that, we also

propose generic code transformation techniques that apply equally to irregular loops and

recursive applications to facilitate efficient use of dynamic parallelism, and we have

automated these code transformations through compiler integration. Wang et al. [94]

have proposed hardware architecture to support lightweight block execution of

dynamically launched kernels. Conversely, our method is purely software-based, and is

thus applicable on any GPU that supports dynamic parallelism, requiring no modification

to the architecture.

4.2 Unified Programming Interface

Although many-core processors are widely used, they are relatively difficult to program,

since they require programmers to be familiar both with parallel programming and with

the features and the operation of these hardware platforms. This complexity is aggravated

by the variety of software stacks used by the various many-core platforms.

In this work [95, 96], we intend to fill this gap and propose a compilation and runtime

framework (Figure 16) for the effective deployment of generic graph applications on

many-core processors (GPUs and the Intel Xeon Phi). Note that our framework also

produces multi-threaded code for multi-core CPUs. Quite unlike previous work [86, 87],

we consider graph applications that use static or dynamic datasets, and we free the

programmer from the need to write specific parallel kernels for GPUs and the Intel Xeon

Phi. Our framework hides the complexity and heterogeneity of the underlying hardware

and software stack from the programmer. The programming API exposed to the user is

45

Figure 16: Proposed graph processing system

platform-agnostic, and includes a set of platform-independent sequential and parallel

constructs. Our source-to-source compiler converts the graph and the containers (sets,

multi-sets and queues) into internal, platform-specific data structures for multi-core CPUs,

Intel Xeon Phi and NVIDIA GPUs. It then uses iterator-based templates to parallelize

graph processing. The compiler generates different functionally-equivalent code variants

for the target platforms. These variants differ in the parallelization strategy and in the

optimized data structures on which they rely. Our runtime system, designed to support

automatic selection of code variants and parameter tuning (based on profiling), also

includes support for efficient dynamic memory management.

Unlike previous work [75-80, 97-100], we do not aim to optimize a specific algorithm

on a particular many-core processor, but to automate the development of high-

performance graph applications on many-core platforms. By leveraging our platform-

agnostic programming API, the application developer delegates the complex task of

tailoring the application to a particular platform to our tool-chain.

46

4.2.1 General Design & Methodology

Graph algorithms can be represented as a sequence of iterative steps. At each step, the

algorithm performs some work on the elements of a working set and updates the working

set (typically, by visiting neighbors of an element) by adding or removing elements. In

every iteration, the elements of the working set may be processed in parallel (although

synchronization mechanisms may be required to control concurrent data accesses). This

computational pattern maps naturally to the bulk synchronous [101] style of parallelism.

Figure 16 describes our proposed graph processing system. The programming

interface consists of a high-level graph API and a set of platform-agnostic, sequential and

parallel constructs allowing the user to define generic graph applications. The source-to-

source compiler generates different code variants for multi-core CPUs, Intel Phi

coprocessors and NVIDIA GPUs. These code variants may differ in several aspects: from

the type of parallelization performed, to the implementation of the underlying data

structures [102], to the handling of nested parallelism, and more. The generated code is

written in OpenMP and CUDA, and it uses the offload execution model on the Intel Phi.

During code generation, the graph and the containers (sets, multi-sets and queues) are

converted into internal, platform-specific data structures. In addition, existing parallel

basic blocks are used for common primitives such as reduction, sort and scan.

Parallelization is enabled by the presence of parallel iterators, which must be explicitly

inserted in the code by the programmer. The compiler automatically handles

synchronizations associated with the graph, the iterators and the containers.

Synchronizations associated with custom data structures must be explicitly indicated by

47

the programmer using high-level, platform-independent synchronization primitives,

which are converted into platform-specific synchronization mechanisms. Finally, the

runtime system supports two important functions: (i) selecting the most suitable code

variant depending on the characteristics of the application, the dataset and the underlying

platform, and (ii) supporting dynamic memory allocation. In this paper, we focus on the

second function and propose a runtime library for dynamic memory management. In

addition, in Chapter 4.2.4 we provide guidelines to efficiently match the application to

the hardware platform.

4.2.2 Programming API

We aim to provide the programmer with a familiar and easy-to-use programming

interface, similar to existing ones designed for CPUs. To this end, we extend Green-

Marl’s API [69] with dynamic memory allocation and runtime primitives to support

applications that use dynamic data sets (Green-Marl assumes static data sets), and we

borrow some containers (ordered and unordered sets) from the Galois’s system [73].

The resulting programming interface is summarized in Figure 17.

Graph API: The graph API includes the abstract data structure and high-level

primitives that can be used by the programmer to define and manipulate graphs. Graphs,

nodes and edges have default attributes, which are part of the API. For example, each

graph consists of a set of nodes and edges, can be directed, and may have a root node.

Each node has a set of neighbors and of (outgoing and incoming) edges, and a level. Each

edge has a left and right vertex and potentially a weight. These basics data structures can

be extended via user-defined, application-specific attributes. Such attributes can be

48

Figure 17: Graph programming API

defined using the addAttr primitive, and their value can be set and queried using the

setAttr and getAttr methods, respectively.

Container data structures: A variety of containers (unordered and ordered sets and

multisets, and queues) can be used to build graph algorithms (for example, to represent

49

the working set). These containers come with a set of access and manipulation primitives

(add, remove, empty, etc.) and can apply to generic objects. Internally, containers operate

on numeric data types and pointers to objects and are mapped to platform-specific,

thread-safe data structures.

Iterators: Iterators provide the ability to define loops. They can be of two kinds:

sequential (for and while) and parallel (foreach and inBFS). Parallel iterators allow the

programmer to expose parallelism within the application. The inBFS iterator (from

Green-Marl [69]) modifies the level attribute of the nodes.

Dynamic memory management primitives: Dynamic memory allocation primitives

can be graph-specific (e.g., newGraph, add/deleteNode, add/deleteEdge) or general-

purpose (e.g., new and delete). The former map to the internal, optimized graph

representation; the latter can be used for containers or application-specific, user-defined

data structures. All these primitives are internally mapped to a custom_malloc function

and handled within our runtime system.

Parallel primitives: Commonly used parallel primitives on containers (reduction,

scan and sort) are internally mapped to platform-specific, optimized, thread-safe

implementations.

Synchronization primitives: The source-to-source compiler automatically handles

synchronization related to the graph data structure, containers and iterators. However,

application-specific, user-defined data structures may also require synchronized access.

This kind of synchronization must be explicitly indicated by the programmer through

high-level primitives (barrier and critical). These primitives are internally mapped to

platform-specific synchronization mechanisms.

50

Runtime primitives: Runtime primitives can be invoked when the graph data

structure is modified by external intervention. Specifically, commit is used to commit a

set of graph modifications to the runtime system; after a commit, the required

modifications are applied to the internal graph and possibly incorporated in the working

set. The rebalance primitive allows re-optimizing the internal layout of the graph data

structure.

4.2.3 Case Study

We consider two kinds of applications: graph analytics and general purpose graph

processing. Specifically, we target three categories of workloads.

Graph analytics on static datasets: These read-only algorithms perform analysis tasks

on graphs that do not change over time or that change so infrequently to justify rerunning

the algorithm on the whole graph when this happens.

Graph analytics on dynamic datasets: These read-only algorithms perform analyses

on graphs that may change over time. The graph itself is not modified by the algorithm,

but by external events. For instance, in social network, graphs constantly change due to

“friend” and “unfriend” acticities.

General purpose graph processing: These read-write algorithms perform various

types of general-purpose computations that may modify the structure of the underlying

graph. For example, subset construction [103], which transforms a non-deterministic

finite automaton (NFA) into a deterministic one (DFA), is a general purpose read-write

algorithm.

51

Figure 18: A-DFA compression algorithm

We briefly describe two algorithms used as example workloads and illustrate our

programming API on them.

A-DFA: A-DFA [104] is a compression algorithm used to reduce the memory

footprint of DFA accepting large sets of regular expressions. For simplicity, in this paper

we focus on the computation of the application-specific default transition attribute. Thus,

the A-DFA algorithm shown in Figure 18 is read-only and operates on a static graph.

Specifically, the algorithm visits a DFA graph in BFS manner (line 2). It compares each

node with every other node at lower depth (skipping d levels) and selects the node with

more transition commonality as default target state. Compared to BFS, A-DFA presents a

non-trivial computation phase. In fact, the work executed at every step of the BFS

traversal (lines 3-11) includes control-flow operations and scattered memory accesses to

the whole DFA graph. We also notice that this algorithm exhibits a two-level parallelism

(inBFS at line 2 and foreach at line 5).

52

Figure 19: PageRank algorithm

PageRank: PageRank (Figure 19) is commonly used in search engines to rank

webpages based on their significance. The rank attributes are initialized to a default value

upon creation. In each iteration of the main loop (line 2), the ranks are updated according

to the outdegree of connected nodes. Specifically, every node distributes its rank evenly

to its outgoing neighbors (lines 5-6). PageRank terminates after all ranks converge (i.e.,

their variation falls below a given threshold delta). PageRank is a read-only algorithm

that can operate on either static or dynamic graphs since webpages can be created and

modified by user intervention. The user notifies the runtime system by issuing a sequence

of addNode and addEdge (and corresponding delete operations) followed by a commit.

The commit causes the involved nodes to be added to the working set ws. External

modifications to ws are processed in the next iteration. The dynamic_update primitive in

the iterator at line 2 indicates that external updates should be incorporated in ws at the

beginning of each iteration. This can happen while PageRank is running or when it is

terminated (in which case it will be reactivated). We note that the ranks are usually

double precision floating point numbers, thus requiring the use of floating point

arithmetic (on GPUs, floating point is slower than integer arithmetic).

53

Figure 20: DFA (subset) construction algorithm

DFA construction: DFA are typically used by applications performing regular

expression matching. In this context, regular expressions are initially compiled into a

NFA. Then, the NFA is transformed into DFA through subset construction [103] (Figure

20). Like A-DFA, DFA construction proceeds in BFS manner and exhibits a two-level

parallelism (inBFS at line 5 and foreach at line 7). Again, the work performed in each

iteration (body of inBFS loop at lines 6-20) contains control-flow operations and irregular

memory accesses. However, DFA construction involves an additional complexity: it

modifies the DFA graph (in fact, it creates it). As can be seen, DFA construction involves

dynamic memory operations on the DFA graph (lines 2, 4, 14 and 18), on sets (lines 4, 8

and 17) and on the custom subset data structure (lines 3, 4 and 14). The latter has a

complexity hidden within its lookup and update primitives. Briefly, subset is a double

linked-list data structure used to verify in linear time if a subset belongs to a power set.

54

The programmer can make the code parallelizable by using a critical section (lines 13-

15): this is an example of coarse-grained synchronization. In alternative, the programmer

can provide a thread-safe implementation of the subset data structure optimized for

different platforms (thus allowing custom fine-grained synchronization).

4.2.4 Compiler Design

Once graph algorithms are expressed by using our platform-agnostic API, our source-to-

source compiler generates different code variants for GPU, Intel Phi, and multi-core CPU.

We describe the main aspects of the compilation process.

A. Data Structure Design

Our reference graph encoding scheme is the compressed sparse row form (CSR), a

format commonly used to represent sparse data structures [75]. To support dynamic

graphs, we extend the basic CSR data structure into a hierarchical-CSR (Figure 20).

Initially, we overprovision both the level-1 nodes and edges arrays. In the edges array, we

pre-allocate a default number of edges per node (blank slots in the level-1 edges array in

Figure 20). The optimal initial provisioning size depends on the characteristics of the

graph. Reserving larger space can improve the insertion performance at the cost of

wasting memory. At each deletion, we invalidate elements. Upon insertion, we first use

the free elements of the nodes and edges arrays. When the level-1 nodes array overflows,

we allocate a level-2 nodes array. Similarly, when the portion of the edges array allocated

to a node n overflows, we allocate a block of cells in a level-2 edges array and insert the

new edges of n in it. We repeat this operation recursively: if the level-2 edges/nodes array

overflows, a level-3 array is allocated. For each node, one extra variable is needed to

55

Figure 21: Hierarchical-CSR with level-2, level-3 nodes/edges arrays

store the “pointer” to the corresponding block within the level-2 edge array (s, t, p, q in

Figure 21). In addition, the last element of each level-x block (the dashed area in Figure

21) stores a “pointer” to the level-(x+1) block (null-pointer if such block has not been

allocated). Also, for fast insertion into any level-x block, the first element (solid black

area in Figure 21) records the used space in the block. We fix the size of the level-2

blocks (on GPU, for example, 128B blocks allow aligned memory accesses to entire

blocks), and increase the block-size quadratically from level to level (to take into account

the fact that commonly used small-world networks present only a few nodes with a

substantial number of neighbors). The resulting hierarchical-CSR allows efficient

dynamic insertions and deletions but, due to its nested structure, is less efficient to

traverse than a flat. Our runtime system periodically calls the rebalance primitive to

transform the hierarchical-CSR into pure CSR form. The allocation process relies on the

dynamic memory management mechanism provided by our runtime (Section VI.A),

56

which fosters data locality. For container data structures, we use basic blocks proposed

and discussed in previous work [75, 77, 97].

B. Code Generation

We now describe our code generation process along with the platform-specific

transformations we perform.

General Design – Users encode functions corresponding to the “hot spots” in their

applications using our programming API. Our source-to-source compiler then transforms

these user-defined functions into C++ wrapper functions containing platform-specific

code. In the case of multi-core CPUs, code regions associated with parallel iterators are

translated into parallel regions through the insertion of OpenMP directives. GPUs and

Intel Phi coprocessors require handling also the data transfers between host and device. In

particular, the compiler generates data transfers for graphs and user-defined data

structures declared outside the parallel regions and referenced inside them. In the case of

the Intel Phi, parallel regions are handled using OpenMP directives and placed inside

offload regions surrounded by the “#pragma offload” directive. The primitives to allocate

variables on the coprocessor and move data between host and device are inserted along

with the offload directives. In the case of GPUs, regions of code associated to parallel

iterators are translated into parallel kernels. In this process, elements of the working set

are mapped onto threads or thread-blocks (i.e., thread- and block-based mapping [102])

producing different code variants. The compiler then generates code for data transfers

(using the cudaMalloc and cudaMemcpy primitives) and kernel launches.

Handling of Nested Parallel Iterators – The presence of nested parallel iterators

enables different code variants and can be handled differently on various accelerators.

57

The Intel Phi has a flat hardware parallelism. However, the two-level nesting of A-

DFA and DFA construction leads to different alternatives on the placement of the offload

and OpenMP parallel directives. Specifically, we can: (i) place a synchronous offload at

the level of the sequential for and the parallel directive at the level of the outer inBFS

iterator; (ii) place both the synchronous offload and the parallel directive at the level of

the outer inBFS iterator; (iii) use an asynchronous offload and a parallel directive on one

of the parallel iterators (thus launching several parallel offloads concurrently). We

experimentally found that the offload overhead makes the first code variant preferable.

NVIDIA GPUs present a two-level hardware parallelism. Therefore, two-level nested

iterators (as in 18 and 20) can be naturally handled by using block- and thread-based

mapping for the outer and inner parallel iterators, respectively. On the other hand, using

thread-based mapping on the outer-loop will cause serialization of the inner-loop. In the

presence of three nested parallel iterators, an additional level of parallelism can be

achieved by using multiple streams and the parallel kernel execution feature available

starting from the Fermi architecture [105]. Given its massive hardware parallelism and its

Hyper-Q technology, code variants using concurrent streams are particularly suited to

Kepler GPUs. Kepler GPUs also allow an additional level of nesting through dynamic

parallelism. However, we experimentally found that the overhead for launching nested

kernels is significant, making it difficult to achieve good performance by using this

feature.

Other Accelerator-specific Optimizations – To reduce the communication overhead,

we leverage the compiler analysis techniques proposed by [106] to identify data reused

by subsequent parallel kernels with no intermediate CPU read or write access. These data

58

can be stored persistently on the coprocessor, thus avoiding unnecessary data transfers

between host and device. On the Intel Phi, we use the alloc_if and free_if clauses to

control the allocation of data and the in, out, and nocopy modifiers to avoid unnecessary

data transfers.

On the Intel Phi, the use of vectorization can greatly help performance. Vectorizable

code can come from either foreach or for iterators. In the PageRank algorithm (Figure

19), for example, the for loop at line 6 is a good candidate for vectorization. In the case of

for loops, however, data dependences must be resolved (since these iterators are

sequential). To this end, we rely on a feature of the Intel compiler: inserting a “#pragma

ivdep” before a loop allows the Intel compiler to resolve conservatively assumed data

dependences and possibly generate vectorized code.

4.2.5 Runtime Library Design

The runtime system has essentially two functions (Figure 16): dynamically selecting and

tuning the code variant that better fits the characteristics of the target dataset and the

hardware profile, and handling dynamic memory allocation. Variant selection can be

done based on profiling information and by monitoring the size of the working set, and

dynamically selecting the code variant that better fits that level of parallelism [102]. Due

to space constraint, in this paper we only describe dynamic memory management

A. Dynamic Memory Management

NVIDIA GPUs lack of operating system support and of an efficient mechanism to handle

dynamic memory allocation within parallel kernels. Starting from the Fermi Architecture

NVIDIA has added support for the malloc call. However, the use of malloc on GPU has

59

two limitations: first, it leads to inefficient code for small size allocation; and second, it

fails in the presence of large numbers of malloc. We observed that, when using system

malloc, DFA construction fails even on small graphs (about 30k nodes). To circumvent

this problem, we have introduced a custom memory management scheme for GPU. We

have ported this mechanism to multicore CPU and Intel Phi, and have compared our

proposed scheme with the direct use of the system malloc.

General design: Our basic idea is to use a memory pool with fixed-size blocks.

Specifically, we start by pre-allocating a single block with a handle pointing to the next

free position within the block. Each custom_malloc call will obtain the requested number

of bytes from the block, and will cause the handle to be incremented accordingly. When

the current block fills up, a new block is allocated by the runtime.

Our proposed solution uses multiple locks (one per thread-group) to reduce lock

contention. We use two types of blocks (with separate handles): permanent and

temporary blocks. Permanent blocks have the application lifetime, whereas temporary

ones have the lifetime of an iteration of the algorithm. Variable de-allocations within the

temporary blocks are deferred until the end of the corresponding iteration, when

temporary blocks are cleared by resetting their handle. Compile-time code analysis

determines which kind of custom_malloc to perform for each dynamically allocated

variable and the runtime moves temporary data to permanent blocks when needed. This

significantly reduces fragmentation and de-allocation cost, which distinguishes our

dynamic memory management from other proposals.

Intel Phi/CPU implementation: Since the Intel Phi and the CPU have a flat thread

organization, thread grouping is done based on the thread identifiers. Our experimental

60

results show that on CPU the system malloc and custom_malloc have similar

performance. On the Intel Phi, however, the system malloc outperforms the

custom_malloc (independent of the number of regions). We experimentally verified (by

forcing locks also on system malloc calls) that this inefficiency is not due to the

synchronization overhead. We believe that pre-allocating a large memory buffer on the

Intel Phi may affect the performance in two ways. First, the Intel Phi operating system

performs lazy memory allocation (i.e., it progressively allocates memory as needed).

This mechanism may make large allocations costly. Second, large pre-allocations may

have bad interference with caching.

GPU implementation: The GPU implementation of the above memory management

mechanism requires addressing two issues: using a deadlock-free locking mechanism and

reducing the synchronization cost. Ramamurthy [105] pointed out that, due to the SIMT

architecture and the unfairness of GPU warp schedulers, common spin-lock

implementations based on atomic compare_and_swap may cause deadlock. To avoid this

problem, we use the deadlock-free implementation described in [105]. To reduce the

synchronization cost on GPU, we associate a buffer region to each thread-block, thus

limiting contention to threads belonging to the same block. This design also allows

storing handles in shared memory for fast access. However, atomics on shared memory

generally result in serialization and are costly [107]. We experimental verified that

storing these handles in global memory leads to better performances. Finally, we note

that the blocks are stored in global memory, and can therefore be accessed by all threads.

In summary, each thread-block can allocate data only in its assigned regions, but can

access data located in regions mapped to other thread-blocks.

61

4.2.6 Performance Evaluation

In this section we evaluate the performance of the code generated by GRapid on three

platforms: an 8-core Xeon E5-2609 CPU, an NVIDIA Tesla C2075 GPU, and an Intel

Xeon Phi 5110P. This process will provide guidelines on the mapping of applications

onto these platforms. We compiled CPU and Phi code through the Intel C++ compiler

(icpc 13.1.2) and used the CUDA 5 toolkit to compile and run the GPU code. Data

transfer times are included in the coprocessor results. In all cases, we show the speedup

reported by the parallel code over a serial code running on a Xeon E5 processor.

To cover all the categories of graph applications, we implemented BFS, A-DFA,

PageRank and DFA Construction using GRapid. For BFS and PageRank, we used

datasets from DIMACS competitions and Stanford-Large-Data Collection (see [102] for

more detail). The largest graph has 4M nodes and 34.5M edges. For A-DFA and DFA

construction, we use DFA graphs with 30k-700k nodes and 70M-180M edges (typical

sizes in regex matching paper [104]). Due to limited space, we omit a detailed discussion

of the results reported on BFS.

A. A-DFA

Figure 22 and 23 report the performance of A-DFA. The datasets are DFAs with number

of states varying from 30k to 400k, as reported on the x-axes. We recall that A-DFA

makes the default transition of each DFA state n point backward to the state that has the

highest number of transitions in common with n. The distance parameter d affects the

amount of work (lines 3-10 of Figure 18): for larger d, the algorithm performs more state

comparisons (and memory accesses). In the GPU case, we use three of the code variants

62

Figure 22: A-DFA compression –Speedup of GPU over serial CPU implementation

and also show the performance reported by BFS. In the Intel Phi case, we use a bitmap-

based working set and a variable number of threads.

We note the following observations. First, due to the irregularity of the work

performed, the speedup of A-DFA on GPU is substantially inferior to that of BFS using

the same code variants. Second, the GPU speedup of A-DFA decreases when the amount

of work increases (that is, for larger d and datasets). Third, the relative performance of

the code variants differs between BFS and A-DFA. Fourth, due to the more general-

purpose nature of its hardware, the behavior of the Intel Phi differs from the GPU. In fact,

the speedup of A-DFA on the Intel Phi is far greater than that of BFS and increases with

the amount of work (that is, with increasing d) from 9~15x to 43~67x. On the other hand,

the speedup does not scale with the dataset size. In fact, larger graphs put more pressure

on the cache, thereby limiting the performance. In addition, in contrast to BFS, A-DFA

can effectively leverage all 60 cores available on the Intel device: the performance scales

almost linearly until 120 threads (e.g., two threads per core). However, using all four

63

Figure 23: A-DFA compression – Speedup of Xeon Phi over serial CPU
implementation.

hardware threads in each core does not provide further benefits. Finally, due to the

complexity of the work, the multi-threaded CPU implementation of A-DFA achieves

ideal speedup: roughly 8x on 8 cores.

B. PageRank

Figure 24 shows the speedup (and, for values < 0, the slowdown) of PageRank on

dynamic datasets when using our hierarchical-CSR over performing a full CSR rebuild.

We evaluate different methods for initial overprovisioning of the level-1 arrays: zero (0)

provision (reserve no extra space), even provision (reserve the same amount of extra

space to all nodes) and ratio provision (reserve different amounts of extra space to

different nodes according to their outdegree). The experiments are conducted on the

Google weblink graph [102], which consists of 0.7M nodes and 2.5M edges. In case of

even overprovisioning, we set the extra allocation to half of the average node outdegree.

In case of proportional overprovisioning, we overprovision the edge array so that each

64

Figure 24: PageRank on dynamic graphs with hierarchical CSR

node is allocated 150% of the space required by its outdegree. We dynamically add an

increasing number of nodes and edges (evenly distributed among nodes) to the original

graph (x-axis). While doing so, we keep the average outdegree unchanged: the number of

added edges is roughly 7 times that of added nodes. In the hierarchical-CSR

implementation, the PageRank kernel is slightly more complex because it must handle

the hierarchical graph data structure. However, the static approach requires a full rebuild

of the CSR representation and, consequently, large data transfers between the CPU and

the coprocessor. As can be seen, since the amount of added nodes is small (< 3.5%

compared to whole graph), the incremental, hierarchical approach is preferable to a full

rebuild on both CPU and GPU for most of the cases. On CPU, even overprovisioning

achieves the best speedup. On GPU, however, the performance of the 0 provision and

even provision methods are very close. Ratio provision introduces blank slots in the

65

Figure 25: DFA construction – Speedup of multi-core CPU, GPU and Intel Phi over
serial CPU code

level-1 arrays, leading to underutilization of the GPU hardware. By using more extra-

space, ratio provision leads to the worst performance on GPU. We don’t show the

performance of the Intel Phi, because it is poor (always 10%~20% slow down). We

believe that the memory allocation mechanisms within the Intel Phi’s OS may interfere

with our dynamic memory management scheme and cause this performance loss. We

need to get more insights on the operation of the Intel Phi OS to improve the performance

of our memory management scheme.

C. DFA Construction

Figure 25 shows the speedup of DFA construction on multi-core CPU, GPU and Intel Phi

over a serial CPU implementation. We tested two code variants: one using coarse-grained

and the other using fine-grained synchronization. We recall that the coarse-grained code

variant has a critical section around the subset.update primitive, while the fine-grained

version includes a thread-safe subset implementation that associates a fine-grained lock

66

Figure 26: DFA construction using different allocators and GPUs

to each node of the double linked-list. On GPU, we use block-based mapping. In the

kernel configuration, we set the number of blocks to twice the number of SM on the GPU

and the block size to 128 threads. For the Intel Phi, we show the thread configuration

reporting the best performance (the corresponding number of threads is indicated on top

of the bars). We test DFA construction on four datasets with increasing size (x-axis). The

multi-core CPU and the Intel Phi report the best and worst performance, respectively.

Interestingly, the two code variants show comparable performance on all platforms

(recall that the coarse-grained version uses the high-level critical primitive and requires

minimal programming effort). The GPU and Intel Phi are consistently slower than the 8-

threaded CPU code; the performance gap between the multi-core CPU and the many-core

devices, however, decreases as the dataset size (and the runtime parallelism) increases.

The GPU performance suffers from the irregular memory access patterns, cost of locking

and branch divergence. The modest performance of the Intel Phi is in part due to the less

efficient memory management module within the thin-OS running on this coprocessor.

67

We compare our memory allocator with Halloc [108], a state-of-the-art dynamic

memory allocator for NVIDIA Kepler GPUs. For completeness, we also port Halloc to

Fermi GPUs. To this end, we remove the “__shfl” instructions from its code. This

instruction allows distributing the register values from one thread to the other threads

within the same warp, but is available only on Kepler GPUs. On Fermi GPUs, we use

shared memory to exchange the value of register variables among the threads within a

warp. This workaround, however, requires additional synchronization instructions,

leading to performance degradation compared to the original version relying on the

“__shfl” instruction. Figure 26 shows the performance comparison between our allocator

and Halloc for DFA construction on Fermi (C2075) and Kepler (K20) GPUs. As can be

seen, on Fermi GPUs our allocator leads roughly to a 3x speedup over Halloc. In addition,

our allocator achieves a 21%, 25% and 28% performance improvement over Halloc on

the 60k, 280k and 700k node DFA, respectively. This performance improvement can be

explained as follows. Recall that our allocator uses two distinct memory pools – a

permanent and a temporary one – and leverages compile-time analysis to determine

where to perform allocations. This design decreases the deallocation cost and increases

the data locality of temporary data.

D. Summary

Table 2 summarizes the characteristics of the four applications (BFS, A-DFA, PageRank,

DFA Construction) and the speedup reported on multi- and many-core platforms. In the

2nd column we indicate whether the graph topology is static or dynamic, and, in the latter

case, whether it is modified by the application (read-write applications) or by external

intervention (read-only applications). The 3rd column shows the application-specific

68

attributes. The 4th column reports an indication of the complexity of the parallel work and

its arithmetic intensity. As can be seen, many-core platforms outperform multi-core

CPUs on static datasets. The Intel Phi is preferable to GPU for more complex

computational patterns, whereas the arithmetic intensity is not a big discriminating factor.

The three platforms report similar speedups on DFA construction; however, the multi-

core CPU is in this case a slightly better choice, due to the presence of frequent dynamic

memory allocation and synchronization. We note that manually generating code for the

three considered devices would be a daunting and time consuming task: by automatically

generating different versions of the code, GRapid allows the programmer to quickly

identify the platform most suited to his application.

4.3 Adaptive Computing

It has been shown that graphs used in real-world applications [109-111] exhibit

significant topological differences. The topology of the graphs dictates the amount of

parallelism that can be extracted at runtime, thus affecting the performance of specific

GPU implementations. This heterogeneity makes it difficult to design a GPU

implementation of a graph algorithm that is optimal on a large variety of datasets. In this

Table 2: Summary of applications and speedup over serial code

Application
Application &
Graph Type

Attributes
Comp. pattern & arith.

intensity
Best Speedup

m-CPU GPU Phi
BFS read-only static Level (int) Set level (simple& low) 2.5x 50x 3.5x

PageRank read-only
static/dynamic

Rank
(double)

Calculate Rank
(intermediate &

intermediate)
6.3x 6.5x 9x

A-DFA read-only static
Default

Trans (int)
Compare trans.
(complex, low)

8x 6x 45x

DFA
construction

read-write
dynamic

Trans Table
(int)

Compare Subset
(complex, low)

6.5x 5.5x 4.3x

69

work, we argue for an adaptive solution that takes into account the topological

characteristics of the dataset to dynamically select the most suitable alternative among a

set of available GPU implementations.

4.3.1 Motivation

In this section, we present some motivating facts that show the potential of GPUs as

accelerators of graph algorithms and give an intuition of why a dynamic solution can be

preferable to a static one. First, we characterize some graph datasets used in real-world

applications. Second, we introduce the main architectural features of modern GPUs, and

discuss their suitability to the deployment of graph algorithms.

A. Characterization of Graph Datasets

Graphs are a powerful representation used in many practical applications, where the

relationships among the nodes in some network are relevant. Some examples drawn from

different application domains are: the road network, the web link network and the social

network. The road network is typically extracted from GPS maps and used to calculate

the optimal route (or shortest path) between two endpoints. The web link network

contains links between web pages, and its connectivity is typically used by search

algorithms to rank the results of queries. The social network contains relationships

between individuals, and is used to compute a variety of connectivity properties (in

applications like Facebook, for instance, such relationships are used to suggest new

friends).

We use graphs from the 9th and the 10th DIMACS implementation challenges [109,

110] and from the Stanford Large Data Collection [111]. In particular, we consider

70

datasets used in different application domains: the Colorado road network [109], a paper

co-citation network (from the CiteSeer library) [110], a p2p networking network [111],

the Amazon co-purchase network [111], the Google webpage link network [111] and a

SNS network (from Live-Journal) [111]. All but the road network and the paper co-

citation network are directed graphs. Table 3 shows a characterization of these datasets,

in terms of total number of nodes, total number of edges and node degree (that is, number

of edges per node). We observe the following facts.

• The graph size varies considerably across the datasets: from the small p2p

network (with about 36.6 K nodes and 183.8 K edges) to the large SNS network

(with about 4.3 M nodes and 34.5 M edges).

• The average node outdegree also varies considerably: from 2.4 in the CO-road

network, to 73.9 in the CiteSeer network. Four networks (CiteSeer, p2p, Google

and SNS) exhibit a considerable outdegree variance, leading to large outdegree

values. The other networks (CO-road and Amazon) have a more regular structure.

Figure 27 shows the outdegree distribution of the CO-road, the Amazon and the

CiteSeer network. As can be seen, these networks exhibit different characteristics. The

CO-road graph is pretty sparse: most of its nodes have an outdegree from 1 to 4, and the

maximum outdegree is 8. This is because most towns are usually directly connected to a

Table 3: Dataset characterization.

Network # Nodes # Edges
Node Outdegree

min max avg

CO-road 435,666 ~1 M 1 8 2.4
CiteSeer 434,102 ~16 M 1 1,188 73.9

p2p 36,692 ~0.18 M 0 1,383 10.0
Amazon 396,803 ~1.7M 0 10 8.4
Google 739,454 ~2.5 M 0 456 6.9

SNS 4,308,452 ~34.5 M 0 20,293 16.0

71

Figure 27: Outdegree distributions of CO-road, Amazon and CiteSeer networks

handful of other towns, whereas few bigger cities serving as transportation hubs have as

many as 7-8 intercity roads. The Amazon network is very regular: 70% of the nodes have

10 outgoing edges, and the remaining nodes have an outdegree uniformly distributed

between 1 and 9. The CiteSeer network is far less regular: about 90% of the nodes have

less than 200 outgoing edges. On the other hand, the outdegree range is very wide for the

remaining nodes (up to 1,188). The outdegree distribution of the p2p, the Google and the

SNS networks is similar to that of the CiteSeer graph.

This fact has a practical significance. Most graph algorithms proceed iteratively. In

each iteration, they visit the local neighborhood of a working set consisting of nodes or

edges, remove elements from the set and add new elements to it. Intuitively, large

outdegree lead to large working sets, and thus to potentially high amounts of parallelism.

However, unbalanced outdegree distributions can cause work imbalances during graph

traversals. An adaptive solution may therefore better support a wide variety of graphs,

including those with irregular topologies.

B. Imbalanced Work of Graph Algorithms

In this work, we focus on breadth-first search (BFS) and single-source shortest path

(SSSP), two fundamental graph problems. BFS computes the depth of each node n, that is,

the minimum number of nodes visited when moving from a given source node to n. SSSP

computes the minimum cost paths from a given source node to any other node in the

72

Figure 28: Unordered SSSP – size of the working set during the execution (CO-road,
Amazon and CiteSeer networks)

graph. These problems are solved through an iterative graph traversal. Initially, the

working set consists of the source node. In each traversal step the local neighborhood of

the working set is processed. The traversal terminates when the working set becomes

empty. During execution, two kinds of work imbalance can take place.

• Inter-iteration work imbalance - The size of the working set typically changes

from iteration to iteration. For example, Figure 28 shows how the size of the

working set varies during the execution of SSSP on three datasets (CO-road,

Amazon and SNS). As can be seen, the work is generally limited at initial stages,

when the traversal is restricted to the neighborhood of the source node. When

enough nodes have been processed, the working set starts growing and keeps

growing until a large fraction of the nodes have been visited. At that point, the

working set starts shrinking. The working set size and the convergence speed

depend on the specific algorithm and on the characteristics of the dataset. For

instance, on the datasets of Figure 28, BFS has working set sizes from 2 to 20

times smaller than those reported by SSSP.

• Intra-iteration work imbalance - Different nodes can have different outdegrees.

As a consequence, each node in the working set can be potentially associated with

a different amount of work. This fact affects the performance of the GPU design.

73

For example, if a node-to-thread mapping is adopted on a graph with an irregular

topology, thread divergence may arise during execution, and the performance will

be limited by the node with the largest outdegree.

C. Architectural pros & cons of GPUs

GPUs are known for the massive hardware parallelism that they offer. NVIDIA GPUs

consist of several SIMT processors, called Streaming Multiprocessors (SMs), each

containing a set of in-order CUDA cores. In the Fermi architecture, each SM comprises

either 32 or 48 cores (depending on the compute capability of the device). The CUDA

programming model [112] facilitates writing parallel algorithms for GPUs. In CUDA, the

computation is organized in a hierarchical fashion: threads are grouped into thread-blocks;

at runtime, each thread is mapped onto a core and each thread-block is mapped onto a

SM. In CUDA 4, as many as 64K*64K*64K blocks with at most 1,024 threads each are

allowed. This parallelism can clearly be advantageous for graph applications that operate

on large datasets consisting of millions of nodes and edges.

Another characteristic of the GPU architecture is its memory hierarchy. GPUs are

equipped with a relatively large off-chip, high-latency, read-write global memory; a

smaller low-latency, read-only constant memory (which is off-chip but cached); and a

limited on-chip, low-latency, read-write shared memory. The global memory can be

accessed via 32-, 64- or 128-byte transactions and has a high access bandwidth (up to 144

GB/sec). Multiple memory accesses to contiguous memory locations are automatically

coalesced into a single memory transaction, thus saving memory bandwidth. The graph

algorithms in consideration are not computation intensive, but – especially when running

on large datasets - can be memory bound. In fact, when processing hundreds of nodes in

74

parallel, it is necessary to access their neighbors in an efficient way. The GPU high

memory bandwidth can be beneficial for these memory intensive applications.

Two GPU architectural features are particularly problematic when deploying graph

algorithms on GPUs. First, SMs are SIMT-processor. During execution, threads are

grouped into 32-element SIMT units, called warps. In every clock cycle, threads

belonging to the same warp must execute the same instruction. Branches are allowed

through the use of hardware masking. In the presence of branch divergence within a warp,

both paths of the control flow operation are in principle executed by all CUDA cores.

Therefore, the presence of branch divergence within a warp leads to core underutilization.

Unfortunately, the irregular nature of graph algorithms leads to relatively frequent branch

operations. Second, to fully utilize its high memory bandwidth, the GPU requires regular

memory access patterns. In fact, contiguous memory accesses can be coalesced into few

memory transactions when accessing global memory, and allow avoiding bank conflicts

when accessing shared memory. However, the memory access patterns within graph

algorithms are often irregular and hard to predict. Even if this effect can be limited by

representing graphs with ad-hoc data structures (e.g. adjacency matrices in compressed

sparse row form), unpredictable and irregular memory accesses cannot be fully avoided.

4.3.2 Exploration Space

In this section, we present and discuss a possible exploration space for implementing

graph algorithms on GPU. Our study focuses on the BFS and SSSP problems. However,

we believe that our analysis can be extended to other amorphous graph algorithms with

75

Figure 29: Exploration space

similar computational patterns. We consider a 3-dimensional exploration space (Figure

29), which is built according to the following questions.

• Is the working set used by the algorithm ordered or unordered?

• What is the granularity of the mapping of the work to the GPU hardware? Two

obvious alternatives consist of mapping each element of the working set to a

thread (fine-grained mapping) or to a thread-block (coarse-grained mapping).

• How is the working set implemented? We will consider a bitmap-based and a

queue-based implementation.

76

Figure 30: Ordered and unordered BFS algorithms

A. Ordered vs. unordered algorithms

In this work, we consider the distinction between unordered and ordered graph

algorithms introduced by Hassaan et al. [113]. The basic idea is the following. Most

graph algorithms operate iteratively over a working set consisting of nodes or edges; in

unordered graph algorithms, the elements can be extracted from the working set and

processed in any order; conversely, in ordered algorithms, an ordering relation over the

working set imposes a constraint on the processing sequence of the elements in it.

Figure 30 shows the pseudo-code of an ordered and an unordered BFS algorithm,

which compute the level (or depth) of the nodes in a graph. The two algorithms differ in

the nature of the working set (ordered vs. unordered, respectively) and in instruction 8.

The ordered version processes each node exactly once, and adds it to the working set the

first time it is visited (that is, when its level is undefined). The unordered algorithm may

add the same node to the working set multiple times, as long as its level decreases when

the node is visited. The ordered version clearly terminates when all nodes have been

77

Figure 31: Ordered and unordered SSSP algorithms

processed. Since the node level is a monotonically decreasing function, the unordered

version is also guaranteed to terminate.

Figure 31 shows the pseudo-code of an ordered and an unordered SSSP algorithm

(Dijkstra and Bellman-Ford [114], respectively). In the ordered algorithm, the working

set is ordered by distance, and the distance of each node is updated only once. In the

unordered version, such attribute may be updated multiple times (as long as its value

decreases). The ordered algorithm terminates when all node distances have been set.

Since the distance is a monotonically decreasing function, the unordered algorithm is also

guaranteed to terminate. Note that, in the ordered version, the same node can appear

multiple times in the working set with different weight values. However, the ordered

78

nature of the working set ensures that the node distance is updated only once with the

minimum weight value.

In general, ordered algorithms are more work efficient than their unordered

counterparts (in that they process each element a minimum number of times), but take

more iterations to converge. However, unordered algorithms may exhibit higher degrees

of parallelism. In fact, unordered algorithms can process all the nodes in the working set

at the same time, whereas ordered algorithms can process in parallel only elements that

are equivalent in terms of the underlying order relation (in other words, at every iteration,

ordered algorithms effectively process only a subset of the working set). Intuitively,

ordered algorithms are better candidates for serial implementation, whereas unordered

ones can be more suitable for parallel implementation.

B. Coarse- vs. fine-grained mapping

The second dimension of exploration has to do with the mapping granularity of the work

to the GPU hardware. As mentioned, a graph algorithm can be expressed as a sequence of

iterations over a working set. In each iteration, a subset of elements are extracted from

the working set, they are processed (e.g., their depth level or their distance from a source

node is computed), their neighborhood is queried, and possibly new elements are added

to the working set for the next iteration. The per-element work consists on the node

processing and on the visit to its neighborhood. In each iteration, the elements extracted

from the working set can be processed in parallel. One question must be addressed: how

to map the work of each node onto the GPU?

Two basic mapping strategies can be devised: fine-grained (or thread-based) and

coarse-grained (or block-based) mapping. In thread-based mapping, each element in the

79

working set is mapped to a GPU-thread; each thread processes such element and visits its

neighbors. In block-based mapping, each element in the working set is mapped to a

thread-block. Different threads within the same block handle different neighbors of the

element. Block-based mapping exhibits two levels of parallelism: (i) active elements are

processed in parallel by different blocks, and (ii) neighbors are visited in parallel by

different threads.

These mapping strategies have advantages and disadvantages. Fine-grained mapping

is suitable for graphs with a regular topology (that is, low outdegree variance across the

nodes) and in case of large working sets. In fact, a large outdegree distribution may cause

work imbalances across threads during the neighborhood visit, thus leading to thread

divergence. In addition, small working sets may lead to idle cores. The two-level

parallelism of coarse-grained mapping is naturally suited to the GPU hardware. However,

in the presence of nodes with small outdegree (i.e., less than 32 neighbors) this mapping

strategy will keep some cores idle, thereby underutilizing the hardware. In addition, the

GPU has a limited number of SMs. Therefore, block-based mapping is more suitable for

dense graphs (i.e., graphs with high average outdegree) and for small working sets. Since

the amount of per-node computation varies from application to application, block-based

mapping may also be preferable when BFS and SSSP are building blocks of complex

applications, and more work is associated to each element of the working set. In the

pseudo-code in Figures 30 and 31, for example, if we exclude the neighborhood visit, the

processing associated to each node is limited to setting the level/distance value. In more

generic situations where additional work must be performed, block-based mapping brings

an extra level of parallelism and allows distributing the work within the thread-block.

80

 (a)

 (b)
Figure 32: Working set: (a) bitmap vs. (b) queue

Both strategies allow a one-to-one and a many-to-one element-to-thread/block

assignment. In the case of thread-based mapping, for example, each thread can be

assigned either a single, or multiple elements of the working set. This choice affects the

configuration of the kernel launches. In this work, we adopt a one-to-one mapping, which

maximizes the number of threads (or thread-blocks) instantiated at every kernel call. We

note that the thread- and block-based mappings are not the only options, and intermediate

solutions can be devised. For example, when performing the neighborhood visit, nodes

with a high outdegree can be split across multiple threads or thread–blocks. In this work,

we limit ourselves to the two basic mapping strategies, and do not perform this form of

load balancing.

C. Working set: bitmap vs. queue

The third dimension of exploration has to do with the working set representation.

Previous work has adopted two representations: bitmap-based [75] and queue-based [77]

working sets (Figure 32). The former consists of a 1-dimension array of bits, each

indicating whether the corresponding element is in the working set and must be processed

in the current iteration. The latter consists of a queue containing the identifiers of the

81

elements to be processed in the current iteration. Bitmaps are generally used in

combination with thread-based mapping [75].

Both representations have advantages and disadvantages. The bitmap solution is

simple to implement, update and access. In fact, it requires only a one-dimensional array

of bits, and can be accessed with minimal synchronization. However, bitmaps are

inefficient when sparse, that is, when the working set is small. This is especially true if

the number of threads launched is equal to the number of elements in the graph (that is,

nodes in case of BFS and SSSP). In this case, most threads will be idle, leading to high

GPU underutilization. This inefficiency is avoided when representing the working set as

a queue, which contains only elements that must be effectively processed, and can be

efficiently accessed by contiguous threads. However, a queue is more difficult to

implement and especially to update, since it requires more synchronization mechanisms.

4.3.3 Implementation

In this section, we discuss our implementation in details.

A. Data Structures

On both CPU and GPU, we store the graph in compressed sparse row (CSR) form, which

is an efficient encoding scheme also adopted in previous work [75]. CSR represents the

nodes and the edges in the graph through two one-dimensional arrays, the node vector

and the edge vector. The ith entry of the node vector contains an index to the edge vector.

Specifically, such index points to the start of an adjacency list containing the neighbors of

node i. The entries in the edge vector store node identifiers, which in turn can be used to

82

Figure 33: Compressed sparse row graph representation

index the node vector. The size of the node vector is equal to the number of nodes in the

graph (+1); that of the edge vector is equal to the number of edges.

An example is shown in Figure 33, which assumes that the nodes are numbered

starting from 0. The neighbors of nodes 2, for example, can be retrieved by first querying

the node vector, and extracting the element at position 2 and its successor (that is, values

4 and 6, respectively). These values represent the starting and ending index of the

neighbors of node 2 within the edge vector. As can be seen, the elements stored in the

edge vector from position 4 to position 6 (excluded) are 22 and 38. The node vector

requires an extra element to point to the end of the edge vector.

Besides the node and the edge vectors, BFS and SSSP require additional data

structures, which we also represent in array form to allow for easy and efficient

implementation. In particular, BFS and SSSP need an array to store the level and the

distance information, respectively, which is node-specific. In addition, SSSP requires an

array to record the edges’ weights. Finally, some of our implementations require a node-

83

Framework of BFS and SSSP
1: Create data structures on CPU and GPU

2: Initialize working set on CPU

3: Transfer working set and support data from CPU to GPU

4: while working set is not empty do

5: Invoke CUDA_computation kernel

6: Invoke CUDA_workingset_generation kernel
7:end while

Figure 34: Generic CPU pseudo-code for BFS and SSSP

specific update variable to indicate whether a node needs to be updated in the current

iteration.

B. Parallel Kernels

Figure 34 shows the CPU implementation framework of BFS and SSSP. In the first three

steps (lines 1-3), the data structures are created and initialized on both CPU and GPU,

and the required data transfers are performed. The loop in lines 4-7 represents the graph

traversal, which terminates when the working set becomes empty. Each loop iteration

consists essentially of the invocation of two GPU kernels: CUDA_computation and

CUDA_workset_gen. The former processes the elements in the working set, computes

their level/distance value, and visits their neighborhood, adding the elements that should

be processed in the next iteration to an update vector. Since multiple active nodes can

have common neighbors, modifications to the update vector are performed through

atomic operations (thus introducing some serializations). The CUDA_workset_gen kernel

generates the working set by transforming the update vector to bitmap or queue form.

The computation and the working set generation are split into two kernels because

CUDA does not offer primitives for global synchronization inside kernels.

84

CUDA_computation kernel
1’: id = getThreadId() // thread mapping
1”: id = getBlockId() // block mapping
2’: if (id<nodeNumber && bitmap[id]) // bitmap
2”: if (id<queue length) // queue
3: process current node //compute level or distance
4’: current thread visits all neighbors // generate update vector
4”: each thread in block visits a neighbor // generate update vector
5: end if
CUDA_workset_gen kernel
1: id = getThreadId()
2: if (id<nodeNumber && update[id])
3’: generate bitmap working set // bitmap
3”: generate queue working set // queue
4: end if

Figure 35: Pseudo-code of kernel functions (computation and workset_gen)

The CUDA_computation kernel can be implemented according to all possible

combinations of the alternatives in the exploration space of Figure 29. The

ordered/unordered property determines which elements to extract from the working set

and how to process them (Figure 30 and 31). The mapping strategy and the working set

implementation affect how the work is distributed among threads and thread-blocks. The

pseudo-code in Figure 34 summarizes the body of the two kernels using different

mappings and working set representations. The 1st and 2nd lines of the pseudo-code

partition the work among threads or thread-blocks. The 4th line represents the

neighborhood visit. In the case of thread-based mapping, a single thread visits all the

neighbors of the current node; in the case of block-based mapping, each thread visits a

single neighbor. In the CUDA_workset_gen kernel, each thread processes one element in

the update vector and, if necessary, adds it to the working set. The queue-based

implementation requires atomic operations to avoid race conditions while adding nodes

to the queue.

85

The ordered and unordered implementations of BFS are very similar. The ordered

SSSP has the added complexity of finding the minimum distance value in the working set

(findmin), operation which is not required by the unordered version of SSSP. A CPU

implementation of ordered SSSP usually uses a heap data structure to ensure fast

insertions in the working set and accesses to it. We implemented the findmin operation

on GPU by parallel reduction (which is faster than maintaining a heap on CPU).

C. Working Set on GPU

The bitmap representation of the working set was first adopted in [75] in combination

with thread-based mapping. The advantage of this representation is its simplicity: since

each node has an own entry in the bitmap and is handled by a different thread (or thread-

block), no synchronization is required when accessing the working set or generating it

from the update vector.

The queue representation has an added complexity. As explained above, the

CUDA_workset_gen kernel requires atomic operations to convert the update vector into

queue form. In this work, we adopt the basic implementation described in [115].

Specifically, each thread uses an atomic operation only to get a unique insertion index

within the queue. Thus, threads get indexes sequentially, but insert nodes into the queue

in parallel. Once the queue-based working set is created, accesses to it within the

CUDA_computation kernel are coalesced, and do not require any additional

synchronization mechanism.

There are several ways to improve the performances of work queues on GPU. Luo et

al [76] propose a hierarchical queue implemented using both shared and global memory.

The use of shared memory provides faster accesses and lighter synchronizations. To

86

avoid serialization while generating indexes into the queue, Merril et al [77] replace

atomic operations with prefix scans. These optimizations are orthogonal to this work, but

can certainly be applied to our reference implementations.

4.3.4 Adaptive Runtime

As discussed in the previous sections, the heterogeneity of the graphs used in practical

applications makes it impossible to determine a single GPU implementation which is

optimal across all datasets and algorithms. This fact is supported by the experimental

evaluation that we will present in Chapter 4.3.5. To tackle this problem, we design an

adaptive runtime that allows dynamically selecting the GPU implementation that better

suits the characteristics of the dataset. Specifically, our runtime can perform coarse- and

fine-grained decisions. First, given a graph and an algorithm (e.g. BFS or SSSP), it can

select the best GPU implementation according to the graph topology and the underlying

GPU hardware. Second, while processing a graph, our runtime can dynamically switch

between different implementations of the same algorithm in different phases of the

traversal.

A. Overview

The structure of our adaptive framework is shown in Figure 36. We expose to the user an

API consisting of an abstract graph data type. Such API provides primitives to define and

instantiate graphs, as well as functions to run the SSSP and BFS algorithms on them. At

the low level, we have different GPU implementations for both SSSP and BFS, as

defined by the exploration space described in Figure 28. Between the graph API and the

algorithm implementation layers, we have a runtime layer. Such runtime consists of two

87

Figure 36: Overview of our adaptive framework

components: a graph inspector and a decision maker. The former inspects relevant

characteristics of the graph (e.g., number of nodes, number of edges, minimum,

maximum, average node degree), and monitors significant runtime attributes (e.g.,

working set size). The latter dynamically selects the most suitable implementation based

on the values of these attributes and on the hardware characteristics of the underlying

GPU.

In our experimental evaluation, we found that unordered implementations of both

BFS and SSSP generally perform better than their ordered counterparts. This

observation is coherent with [113]; this result is due not only to the larger amount of

parallelism available in unordered graph algorithms, but also to the overhead due to

applying the order relationship to the working set in case ordered versions. Therefore, our

adaptive framework uses only unordered versions of SSSP and BFS, and makes decisions

in two dimensions: mapping method and working set implementation. This leads to 4

88

combinations: (1) thread mapping + bitmap, (2) thread mapping + queue, (3) block

mapping + bitmap, and (4) block mapping + queue. As discussed below, the selection

mechanism takes the utilization of the GPU hardware into account: specifically, we

consider the fraction of cores and SMs effectively used, as well as the amount of thread

divergence introduced.

B. Selection of the Mapping Method

The first decision to be made by our runtime system is whether to use thread- or block-

based mapping. This decision is based on two considerations: core/SM utilization and

amount of thread divergence introduced.

Core/SM utilization - As mentioned in Chapter 4.3.1.C, in CUDA thread-blocks are

mapped onto SMs and threads are mapped onto cores. In Fermi GPUs (used in this work),

each SM consists of 32 or 48 cores. In each graph traversal step, only nodes belonging to

the working set need to be processed. The working set size is an indicator of the amount

of coarse-grained parallelism available within a graph traversal step. Thus, small working

sets (for which thread-based mapping is unable to fully utilize the available GPU cores)

make block-based mapping preferable. Thread-based mapping becomes a viable option

when the working set size approximates the number of cores available on the GPU.

In case of large working sets, both thread- and block-based mapping are viable

options, and an additional selection criterion is required. To this end, we consider the

average outdegree of the nodes in the graph. In case of block-based mapping, the

neighborhood visit is cooperatively performed by the threads within the block (that is,

each thread will process one or more neighbors). The minimum practical size for a

thread-block corresponds to the warp size (i.e., 32 threads). If block-based mapping is

89

used, an average outdegree well below the warp size causes cores within a SM to be

unutilized. Therefore, a small average outdegree makes a thread-based mapping

preferable to block-based mapping.

Thread divergence – Using the average outdegree to discriminate between thread-

and block-based mapping helps also with another consideration: in case of thread-based

mapping, better performances are achieved if the amount of warp divergence is limited.

Since, in case of thread-based mapping, every thread processes all the neighbors of an

active node, the performances of each warp will be limited by the node with the largest

outdegree. In particular, large outdegree variance may cause warp divergence. As can be

observed in Table 3, graphs with high average outdegree tend to exhibit uneven

outdegree distributions. By using thread-based mapping only when the average outdegree

is low, we limit the amount of thread divergence, which would originate by unbalanced

outdegree distributions.

C. Selection of the Working Set Representation

The second decision to be made by our runtime is the working set representation, i.e.,

bitmap vs. queue. As discussed in Chapter 4.3.2.C, a queue implementation involves a

larger number of synchronizations. In particular, the creation of the queue requires a

number of atomic operations equal to the queue length; such atomic operations introduce

serialization among threads, thus degrading performance. This suggests that bitmaps are

preferable to queues in the presence of large working sets. This criterion is also coherent

with another consideration. When using a bitmap representation, there will be a one-to-

one mapping between threads (for thread-based mapping) or blocks (for block-based

mapping) and nodes. Small working sets can cause many threads/blocks to be invoked

90

without performing any real work, leading to core/SM underutilization. Specifically, in

case of a bitmap representation and a graph with |N| nodes, a working set of size |WS|

leads to a fraction of wasted threads/blocks equal to 1-|WS|/|N|. In conclusion, small

working sets will be implemented using a queue, and large ones using a bitmap.

D. Decision Space

The decision space resulting from the previous considerations is illustrated in Figure 36.

We represent the size of the working set along the x-axis, and the average outdegree of

the graph along the y-axis. This decision space is broken into 5 regions by three threshold

values: T1, T2 and T3. In particular, T1 and T2 correspond to the considerations made for

the selection of the mapping method, and T3 to the one for the choice of the working set

representation.

The areas in the decision space represent different implementations. To the left of T2,

the implementation will always be B_QU (block-mapping + queue). Between T2 and T3,

the working set is implemented with a queue while the mapping strategy depends on the

average node outdegree (see T1). To the right of T3, the working set is represented as a

bitmap, and the mapping still depends on the average outdegree (T1). T1, T2 and T3 are

experimentally tuned, as discussed in Chapter 4.3.5.

E. Runtime Overhead

To understand the overhead introduced by our runtime, we must consider its two

components: the decision maker and the graph inspector. The former has extremely low

overhead since its logic (summarized by Figure 37) is straightforward. In order to allow

the decisions described above, our graph inspector must monitor the working set size and

the average outdegree of the nodes within the working set. This information can be

91

Figure 37: Design space

collected at runtime by running a

separate kernel (parallel scan can allow a

more efficient computation of the

average outdegree). This overhead is

much greater than that of the decision

maker. In our implementation, we

reduce this overhead in two ways: (i) by

considering the average outdegree of the whole graph (which is a value computed only

once when reading the graph) rather than the one of the current working set, and (ii) by

sampling (that is, by not performing measurements in every traversal step). These design

decisions represent a trade-off between execution efficiency and runtime overhead. The

selection of the sampling rate and its effect on performances will be discussed in Chapter

4.3.5.

4.3.5 Experimental Evaluation

We present an experimental evaluation on the datasets of Table 3. We first evaluate the

static implementations corresponding to Figure 29. We then study how to tune the

parameters of our adaptive runtime. We finally compare the performance achieved

through our runtime with those achieved through the static solutions.

Our testing platform consists of an Intel Core i7 CPU (running CentOS 5.5) and an

Nvidia Tesla C2070 GPU, which contains 14 32-core SMs. We use gcc 4.1.2 and nvcc

4.0 compilers, both with –O3 optimizations. Our results include CPU processing, GPU

92

Table 4: Speedup of BFS (GPU implementation over serial CPU baseline)

 O_T_BM O_T_QU O_B_BM O_B_QU U_T_BM U_T_QU U_B_BM U_B_QU

CO-road 0.81 1.12 0.04 1.15 0.94 1.50 0.04 1.49
CiteSeer 24.39 15.63 12.35 49.22 24.68 15.04 12.48 48.94

p2p 3.79 3.34 0.93 3.22 3.66 3.44 0.95 3.37
Amazon 13.59 11.12 2.05 10.62 13.94 10.60 2.07 11.52
Google 20.76 18.82 2.94 18.90 21.57 18.03 2.96 20.36

SNS 20.39 16.33 8.43 24.02 24.04 18.00 8.64 24.30

processing and CPU-GPU transfer times. We do not measure the time spent loading

graph data from the hard drive.

A. Performance of Static Implementations

Tables 4 and 5 summarize the performances of the BFS and SSSP implementations

covering the exploration space in Figure 29. In particular, the tables report the speed up

of each GPU implementation over a serial CPU implementation. All the GPU solutions

are named with three fields separated by underscore. The first field indicates whether the

implementation is ordered (O) or unordered (U); the second field distinguishes thread-

based (T) and block-based (B) mapping; the third field indicates the representation of the

working set: bitmap (BM) vs. queue (QU). For instance, “O_B_BM” indicates that the

implementation is ordered, uses block-based mapping and a bitmapped working set. For

each dataset, grey cells show the best performance achieved.

The tables show the results reported using the best kernel configurations, which have

been obtained by using the “CUDA Occupancy Calculator” and conducting experiments

under different settings. When using thread-based mapping, we found that the best results

can be achieved with 192 threads per block. When using block-based mapping, the

optimal number of threads per block is the multiple of 32 closest to the average node

outdegree in the graph.

93

Table 5: Speedup of SSSP (GPU code over serial CPU baseline)

 O_T_BM O_T_QU O_B_BM O_B_QU U_T_BM U_T_QU U_B_BM U_B_QU

CO-road 0.02 0.01 0.0012 0.01 1.88 1.76 0.35 2.11
CiteSeer 136.23 112.77 11.81 139.53 126.47 118.91 483.24 867.91

p2p 1.29 1.16 0.22 1.22 135.65 127.38 49.17 131.88
Amazon 3.29 3.03 0.26 3.12 95.10 58.93 37.71 99.83
Google 2.27 2.16 0.18 2.19 96.57 58.12 32.94 89.32

SNS 25.37 24.33 1.87 24.81 174.82 140.45 136.08 276.23

For BFS, we can make the following observations. First, when using the same

mapping strategy and working set representation, ordered and unordered algorithms

achieve very similar performance. In ordered BFS, the nodes are processed level by level

and each node is accessed exactly once. In unordered BFS, in principle each node may be

updated multiple times. However, since in every iteration we process the entire working

set, our unordered GPU implementation also proceeds level by level, unless the working

set is initialized through some depth-based traversal. We experimentally verified that

limited amount of initialization (e.g., depth-based traversal in 3-5 directions) does not

substantially affect the results. Second, the GPU implementation does not outperform its

CPU counterpart on all datasets. In fact, the GPU performance is poor for the CO-road

network, whose average outdegree is only 2.6 (see Table 3), and whose diameter is

relatively large (more than 1000 levels). Third, the best GPU implementation varies from

dataset to dataset. For instance, the CO-road and CiteSeer networks favor U_B_QU,

while the Amazon and p2p networks achieve best performance with U_T_BM.

94

Figure 38: Processing speed of bet implementation

For SSSP, we can observe the following facts. First, unordered algorithms are

significantly faster than their ordered version. This has two motivations: (1) unordered

SSSP exhibits more parallelism than ordered SSSP, and (2) ordered SSSP suffers from

the cost of implementing the findmin operation. Second, the ordered SSSP on GPU can

achieve considerable speedup over its serial CPU version. In every iteration, nodes at the

same distance can be processed in parallel. In addition, the parallel reduction on GPU is a

good alternative to executing the findmin operation on CPU. Third, by concurrently

processing the elements in each node’s neighborhood, block-based mapping leads to high

speedups on graphs with large average outdegrees (e.g., CiteSeer and SNS). Finally, we

can again observe that the best implementation strictly depends on the dataset; for

example U_B_BM performs very well on CiteSeer, but exhibits the worst performance

on the other 5 datasets.

Figure 38 shows the processing speed (in millions nodes per second) of the best GPU

implementation of BFS and SSSP across the considered datasets. BFS achieves better

95

performance than SSSP due to its faster convergence. Our experiments show similar

results to previous work [76] and prove that GPU can be successfully used to run graph

algorithms on large datasets. Since our results show that the best solution depends on the

characteristics of the underlying dataset, we now evaluate the use of our adaptive runtime.

B. Parameter Tuning for our Adaptive Runtime.

Before evaluating the performance of our adaptive runtime, we study how to tune its

parameters. In particular, we start with T1, T2, and T3, the thresholds used by the decision

maker and illustrated in Figure 37.

Recall that T1 is related to the average outdegree of the graph, and allows

discriminating between thread- and block-based mapping when the size of the working

set would allow both alternatives. Since each thread-block must at least contain one warp

(i.e., 32 threads), if the average outdegree is less than 32, block-based mapping will

underutilize the hardware resources. Thus, we set T1 to 32.

T2 indicates the size of the working set below which block-based mapping should be

always preferred to thread-based mapping. Its value is related to the kernel configuration

and the number of SMs on the GPU. As mentioned in the previous section, we

experimentally verified that good configurations for thread-based mapping are

characterized by 192 threads per block. The GPU used in our experiments has 14 SMs.

When the size of the working set is less than 192*14 = 2,688 nodes, thread-based

mapping will leave some SMs idle, thus underutilizing the GPU. To confirm this analysis,

we measure the kernel execution time of T_QU and B_QU across all iterations of BFS

and SSSP. Our results show that B_QU outperforms T_QU for working set sizes smaller

than ~3000. Therefore, we set T2 to 2,688.

96

Figure 39: Performance under different T3 settings (SSSP)

T3 indicates the size of the working set above which a bitmap representation is

preferable to a queue. In Figure 39, we report the results of experiments conducted to

study how the performance changes with T3. We recall that the ratio between the size of

the working set and the number of nodes in the graph indicates, in case of a bitmap

representation, the fraction of threads/blocks instantiated that will effectively perform

some work. Therefore, in the x-axis we show the percentage ratio of T3 over the number

of nodes in the graph. As can be seen, for all datasets but CiteSeer, the execution time

increases with T3. This can be easily explained as follows: in the presence of large

working sets, the queue generation incurs higher overheads due to atomic operations.

When the ratio T3/#node is less than 6%, the execution time increases very slowly.

However, when it exceeds 7% or 8%, the execution time increases rapidly (CO-road, p2p

and SNS). Although this trend is not exactly the same for all datasets, we set the value of

T3 to 6%. It is worth explaining why, in the case of CiteSeer, the execution time

decreases even when the ratio T3/#node reaches 13%. The CiteSeer dataset is

characterized by a high average outdegree, which leads to higher parallelism. In case of a

97

Figure 40: Performance under different sampling rates (SSSP)

queue implementation, the amount of work performed within a thread-block amortizes

the overhead due to the atomic operations performed when generating the queue, making

a queue preferable to a bitmap.

The graph inspector introduces a runtime overhead while monitoring the working set

size. Such overhead can be reduced by performing this measurement task periodically,

rather than at every iteration. Figure 40 shows the performance under different sampling

rates. Due to lack of space and given the similarity between BFS and SSSP, we show

only the SSSP results. We can observe that the performance generally benefits from a

decreased sampling rate. However, the changes are not smooth and vary across datasets.

In general, datasets characterized by a longer convergence time (e.g. CO-road, CiteSeer,

and SNS) experience a slow and steady performance improvement as the sampling rate

decreases. On the other hand, graphs that take only a few iterations to converge (e.g.,

Google, p2p) are more sensitive to changes in the sampling rate. To make a trade-off, we

set the sampling rate of our adaptive runtime to 6. With this setting, we observed a

runtime overhead varying from 10.6% (on CiteSeer) to 13% (on p2p).

98

Figure 41: Performance of our adaptive runtime on BFS (to the left) and SSSP (to

the right) – baseline: best static solution

C. Overall Performance of Adaptive Runtime

Figure 41 shows the speedup comparison between our adaptive runtime, the worst and

the best static solution. In every case, the best static implementation is taken as baseline.

Only unordered implementations are considered (also for the worst case). The values

reported on the bars are the speedup numbers of the worst static and of the adaptive

solution over the best static implementation. Since our goal is to argue that an adaptive

system can capture dynamic parallelism and not to develop a highly tuned code, in our

study we use basic kernels similar to those by Harish and Narayanan [75]. However, the

performance achieved by our dynamic solution is in the same order of magnitude as that

achieved by Merrill et al [77] (for example, our dynamic BFS computes 0.74 billion

edges/sec on the CiteSeer network).

We can observe the following. First, the performance of the worst static solution can

be as low as 3% (and as high as 52%) of that of the best static solution. Second, despite

its overhead, our adaptive runtime achieves better performance than the best static

implementation on most of these real world graphs. Specifically, the speedup over the

best static solution ranges from 1.43 to 2.02. Although on CiteSeer, Google (SSSP) and

SNS (SSSP) the adaptive runtime has no advantage compared to the best static solution, it

99

still achieves 95-99% of its performance (and avoids the penalty associated with possibly

choosing a bad implementation).

4.4 Parallelization Templates

The effective deployment of applications exhibiting irregular nested parallelism on GPUs

is still an open problem. A naïve mapping of irregular code onto the GPU hardware often

leads to uneven work distribution. As a consequence, simple parallelization templates

handling all the loop iterations in the same way may lead to hardware underutilization.

On the other hand, adding simple load balancing mechanisms to the parallelization may

allow a better mapping of work to hardware and, consequently, it may improve the

application performance. In this work, we focus on simple load balancing schemes and

study the use of dynamic parallelism as a means to achieve better hardware utilization.

Specifically, we investigate mechanisms to effectively distribute irregular work to

streaming multiprocessors and GPU cores. Some of our parallelization templates rely on

dynamic parallelism, a feature recently introduced by Nvidia in their Kepler GPUs and

announced as part of the OpenCL 2.0 standard. We propose mechanisms to maximize the

work performed by nested kernels and minimize the overhead due to their invocation.

Our parallelization techniques can be incorporated in compilers, thus freeing the

programmer from the need to worry about the mapping of work to the hardware and to

understand the complex semantics of GPU dynamic parallelism.

100

4.4.1 Motivation

GPUs present two levels of hardware parallelism: streaming multiprocessors and CUDA

cores in Nvidia’s parlance, and SIMD units and stream processors in AMD’s. Commonly

used programming models for many-core processors, such as CUDA and OpenCL,

expose this two-level hardware parallelism to the programmer through a two-level

multithreading model: at a coarse grain, CUDA thread-blocks and OpenCL work-groups

are mapped onto streaming multiprocessors and SIMD units; at a fine grain, CUDA

threads and OpenCL work-items are mapped onto cores and stream processors. An

additional level of parallelism is provided by the opportunity to launch multiple kernels

concurrently through CUDA streams and OpenCL command queues. In addition, Kepler

GPUs allow nested kernel invocations; this functionality, called dynamic parallelism, has

recently been announced as part of the OpenCL 2.0 standard and will soon be included in

AMD devices. In the remainder of this paper, we will use CUDA terminology.

Despite the presence of hardware and software support for nested parallelism, finding

the optimal mapping of algorithms exhibiting multiple levels of parallelism onto GPUs is

not a trivial problem. Especially in the presence of irregular computation, a naïve

mapping of irregular code onto the GPU hardware can lead to resource underutilization

and, thereby, limited performance. Besides allowing recursion, dynamic parallelism has

the potential for enabling load balancing and improving the hardware utilization. This is

because nested kernels, each with a potentially different degree of parallelism, are

dynamically mapped to the GPU cores by the hardware scheduler according to the

runtime utilization of the hardware resources. Unfortunately, the effective use of this

101

feature has yet to be understood: the invocation of nested kernels can incur significant

overhead [91] and may be beneficial only if the amount of work spawned is substantial.

In this work, we only consider applications containing parallelizable irregular nested

loops. We propose and analyze different parallelization templates aimed to improve the

hardware utilization and the performance – some of them leveraging the dynamic

parallelism feature [116]. Our goal is to propose and evaluate simple and yet effective

mechanisms that can be incorporated in GPU compilers.

4.4.2 Irregular Nested Loop

The hierarchical nature of the GPU architecture leads to two logical ways to map parallel

loops onto the hardware: different loop iterations may be mapped either to GPU cores

(thread-based mapping) or to streaming multiprocessors (block-based mapping) [102]. In

the former case, loop iterations are assigned to threads; in the latter, they are assigned to

thread-blocks. For brevity, we will use the terms thread- or block-mapped loops and

kernels to indicate loops and kernels parallelized with one of these two approaches. In the

presence of loop nesting, the mapping of inner loops depends on the mapping performed

on the outer loops. For example, thread-based mapping on an outer-loop will cause

serialization of all inner loops, while block-based mapping on an outer-loop will allow

thread-based mapping on the inner loops. In addition, stream-based mapping (whereby

different iterations of the loop are assigned to different CUDA streams) offers an

additional degree of freedom to the parallelization process. During code generation,

compiler analysis is required to identify the type of GPU memory where each variable

must be stored and the need for synchronization and reduction operations to access

102

Figure 42: Parallelization templates for
irregular nested loops

shared variables. For example, in

the presence of a block-mapped

outer loop and a thread-mapped

inner loop, variables defined inside

the outer loop but outside the inner

loop will be shared by all threads

in a block. Therefore, these

variables will need to be stored in

shared memory, and their access

by threads within the inner loop

will require synchronization.

Simply relying on thread- and

block-based mapping in the

parallelization process is

acceptable for regular nested loops,

wherein the number of iterations of

an inner loop does not vary across the iterations of the outer loop. However, this simple

solution may lead to inefficiencies when applied to irregular nested loops, for which this

property does not hold. Irregular nested loops have the structure of the code in Figure

42(a). As can be seen, the number of iterations of the inner loop is a function of i, the

outer loop variable. In the case of irregular nested loops, the use of thread-based mapping

on the outer-loop may cause warp divergence (i.e., different threads are assigned different

amounts of work), while the use of block-based mapping will lead to uneven block

103

utilization, which in turn may cause GPU underutilization. Load balancing of irregular

nested loops is one of the use cases for GPU dynamic parallelism. By launching nested

grids of variable size, dynamic parallelism has the potential for improving the GPU

utilization. However, despite its overhead has been reduced in recent CUDA distributions,

the effective use this feature depends on the amount of work spawned in each kernel

invocation.

We consider different parallelization templates aimed to perform load balancing in

the presence of irregular nested loops. The proposed code variants trade off the

advantages and disadvantages of thread- and block-based mapping, respectively. In

particular, in Figure 42(b-e) we illustrate the load-balancing variants of the thread-based

mapping template. Those variants rely on a load balancing threshold parameter (lbTHRES).

The dual-queue template in Figure 42(b) divides the elements processed in the outer loop

in two queues depending on the number of iterations they require in the inner-loop and

processes those queues separately using thread- and block-based mapping, thus reducing

the warp divergence of the former and the block-level work-imbalance of the latter. The

delayed-buffer template in Figure 42(c) delays the execution of large iterations of the

outer loop by queuing them in a buffer and then processing them using block-based

mapping. We consider two versions of this template: one that stores the buffer in global

memory (dbuf-global), thus requiring two kernel calls and allowing redistributing the

work among thread-blocks in the second phase; the other that stores the buffer in shared

memory (dbuf-shared), thus requiring a single kernel invocation but possibly leading to

uneven work distribution among thread-blocks. The naïve dynamic parallelism (dpar-

naïve) template in Figure 42(d) invokes a nested call for each “large” iteration (and

104

performs the dynamic parallelism calls at a thread level). Finally, the optimized dynamic

parallelism template (dpar-opt) in Figure 42(e) delays spawning nested calls to a second-

phase; by invoking a single dynamic parallelism call for each thread-block, this code

variant spawns fewer and larger kernels.

We note that GPU dynamic parallelism has fairly elaborate semantics. For example,

nested kernel calls are performed by threads, but their synchronization happens at the

level of thread-blocks; registers and shared memory variables are not visible to nested

kernels; memory coherence and consistency between parent and child kernels require

explicit synchronization; and concurrent execution requires the use of CUDA streams.

Fortunately, the proposed parallelization templates for nested loops are simple and can be

incorporated in a compiler, allowing the programmer to write only the simplified code in

Figure 42(a). The automatic generation of the code variants corresponding to the

proposed parallelization templates by a compiler will therefore hide from the programmer

not only the two-level hardware and software organization of the GPU, but also the

execution and memory model of GPU dynamic parallelism.

Several factors may impact the effectiveness of the proposed parallelization templates.

For example, the optimal load balancing threshold (lbTHRES) will depend on the

underlying dataset and algorithm. In addition, the performance of each parallelization

template will depend on the characteristics of the algorithm (that is, the nature of the

work in Figure 42). We explore these aspects in our experimental evaluation.

105

4.4.3 Experimental Evaluation

A. Experimental Setup

Hardware and Software Setup: We run all our experiments on a server equipped with a

Xeon E5-2620 CPU and an Nvidia K20 GPU. The machine uses CentOS release 6.4. We

compiled and run our code using gcc v4.4.7 and CUDA v6. We used Nvidia Visual

Profiler to collect the profiling data presented in our analysis.

Benchmark Applications: We evaluated the performance of the proposed

parallelization templates on four applications, which include irregular nested loops (SSSP,

BC, PageRank, SpMV). Whenever available, we used open-source implementations of

these applications as baselines.

• Single-Source Shortest Path (SSSP): For SSSP, we used the thread-mapped

implementation described in [75] as baseline. SSSP is a memory intensive

application with scattered memory accesses.

• Betweenness Centrality (BC): A node’s BC is an indicator of its centrality in a

network, and its value is equal to the number of shortest paths from all nodes to

all others that pass through that node. Our parallel implementation is based on

Brandes' algorithm and operates in two phases. First, it constructs the shortest

paths tree using BFS (we consider unweighted graphs); second, it computes the

BC value by traversing the shortest path tree. Both phases present irregular nested

loops and scattered memory accesses.

• PageRank: PageRank is a popular graph analysis algorithm to rank web pages.

We consider the GPU implementation described in [117] as a reference. This

algorithm contains a parallelizable, irregular nested loop: each iteration of the

106

outer loop processes a different webpage (node in a graph); the inner loop collects

ranks from the neighbors of the considered node.

• Sparse Matrix-Vector multiplication (SpMV): SpMV [118] calculates the

product of a sparse matrix and a dense vector, and is an important building block

for diverse applications in scientific computing, financial modeling and

information retrieval. Since the sparse matrix is represented in Compressed

Sparse Row format, the nested loop within the matrix multiplication algorithm is

irregular.

Datasets: For SSSP, PageRank and SpMV, we use CiteSeer, a paper citation network

from the DIMACS implementation challenges [7]. CiteSeer [119] has about 434 thousand

nodes, 16 million edges and a node outdegree that varies from 1 to 1,188 across the graph

(with an average of 73.9). For BC we use Wikipedia’s who-votes-on-whom network

(Wiki-vote) [120], a small-world network consisting of about 7 thousand nodes, 100

thousand edges and a node outdegree that varies from 0 to 893 across the graph (with an

average of 14.6.9).

B. Experimental Results

In this section, we first discuss the selection of the kernel configurations used in our

experiments; we then illustrate the rationale of our experiments by presenting some

results on SSSP; and we finally complete our discussion by comparing the results

reported on PageRank, BC and SpMV.

All the charts presented in this section report the speedup of the code variants derived

from the use of the parallelization templates in Figure 42 over a baseline implementation

that uses thread-mapping in the outer loop and no load balancing. The baseline GPU

107

implementations achieve the following speedups over serial CPU code: 8.2x (SSSP), 2.5x

(BC), 15.8x (PageRank) and 2.4x (SpMV).

Kernel configurations – Recall that the parallelization templates in Figure 42

include two phases: one using thread-based mapping and one using block-based mapping.

For example, the dbuf-global scheme first invokes a kernel where the outer loop is

parallelized with thread-based mapping, and then it invokes a kernel that uses block-

based mapping to process the delayed buffer. Here, we discuss the selection of the kernel

configuration used in both cases.

For thread-based mapping, we leverage the CUDA occupancy calculator to determine

the optimal thread-block size. Since the considered applications have a low register and

shared memory utilization (and some of them do not use shared memory at all), the

optimal block size results to be large in all cases. Specifically, we use 192 threads per

block, equaling the number of cores per streaming multiprocessor on Kepler GPUs. We

recall that in a thread-mapped implementation each thread is assigned one or more

iterations of the outer loop in Figure 42(a). Hence, we configure the number of blocks to

be run based on the block size, the total number of iterations to be run and the maximum

grid configuration allowed on Kepler GPUs.

In case of block-based mapping, each iteration of the outer loop is assigned to a

thread-block, and threads within a block execute iterations of the inner loop. A small

thread-block configuration will tend to assign multiple iterations of the inner loop to each

thread. Conversely, large blocks may lead to hardware underutilization, as some

iterations of the outer loop may not present enough parallelism to fully exploit the GPU

cores on a streaming multiprocessor. We recall that the value of the lbTHRES (load

108

(a) lbTHRES = 64 (b) lbTHRES = 128 (c) lbTHRES = 192

Figure 43: SpMV: Speedup of load balancing code variants over basic thread-mapped
implementation under different settings

balancing threshold) parameter determines the iterations of the outer loop that are

processed in the second, block-mapped phase of the code.

We performed a set of experiments to determine good block size configurations to be

used in the block-mapped portions of the code under different lbTHRES settings. Figure 43

shows the results of experiments performed on SpMV using different block size

configurations and various settings of parameter lbTHRES. All experiments are run on the

CiteSeer network. We omit the dpar-naïve implementation because, as we will show later,

it greatly underperforms the other code variants. According to the CUDA occupancy

calculator, small blocks consisting of 32 threads lead to low hardware occupancy. Our

experiments confirmed low performance with fewer than 32 threads per block; therefore,

here we consider block sizes ≥ 64. As can be seen, the performance is insensitive to the

block size but mainly affected by lbTHRES. Some templates perform better in the presence

of smaller blocks, especially for small values of lbTHRES. We observed similar results on

the other applications with different datasets. These results can be explained as follows.

A block size larger than the value of lbTHRES may lead to hardware underutilization. To

understand why, refer to the pseudo-code in Figure 42. All outer loop iterations

presenting an inner loop size f(i) greater than lbTHRES are processed in a block-mapped

109

Figure 44: SSSP: Speedup of load balancing code variants over basic thread-

mapped implementation

fashion. If f(i) is smaller than the block-size, the threads within the block may not be

assigned any work, leading to GPU underutilization. Therefore, in the remaining

experiments we use small blocks consisting of 64 threads for the block-mapped kernels.

Results on SSSP: We now compare the performance of the five parallelization

templates on SSSP. We refer to the basic implementation described in [75], which

encodes the graph data structure in Compressed Sparse Row (CSR) format (more

information can be found in [75]). When a graph is represented in CSR format, its

traversal assumes the form of the nested loop in Figure 41(a), where the outer loop

iterates over the nodes in the graph, and the inner loop over the neighbors of each node i.

In irregular graphs where the node outdegree (f[i]) varies significantly from node to node,

this traversal loop is irregular. Here, we show experiments performed on CiteSeer. Figure

44 shows the speedup of all code variants over the baseline thread-mapped

implementation; the number of nested kernel calls performed by the two dynamic

parallelism-based solutions are reported on top of the bars. Due to the irregular nature of

the CiteSeer graph, almost all code variants that include load balancing outperform the

110

basic thread-mapped implementation. The dpar-naïve code variant is the exception: due

to the overhead of the large number of (small) nested kernel calls performed, this

implementation leads consistently to (often significant) performance degradation. The

delayed buffer-based and the optimized dynamic parallelism-based code variants yield

the best results, and the performance improvement depends on the value of the load

balancing threshold, which affects the amount of load balancing performed. The optimal

value of this parameter corresponds to the warp size (no improvements were observed for

lbTHRES<32).

To better understand these results, we used the Nvidia Visual Profiler to collect three

performance metrics: the warp execution efficiency (ratio of the average active threads

per warp to the maximum number of threads per warp on a streaming multiprocessor),

and the global memory load and store efficiency (ratio of the number of requested

memory load and store transactions to the actual number of load and store transactions

performed - the lack of memory coalescing can cause more memory transactions than

requested to be triggered). Table 6 shows the profiling data gathered for lbTHRES = 32. As

can be seen, all parallelization templates but dpar-naïve report an increased warp

efficiency compared to the baseline code. This indicates a better utilization of the

available GPU cores. In addition, by processing nodes with low outdegrees (< lbTHRES)

and nodes with high outdegrees separately, these code templates improve the memory

load and store efficiency. Finally, thanks to its use of shared memory, dbuf-shared

improve the memory coalescing over dbuf-global, leading to better memory efficiency.

To conclude, our proposed parallelization templates improve both GPU core utilization

and memory access patterns.

111

(a) BC (b) PageRank (c) SpMV

Figure 45: Speedup of load balancing code variants over basic thread-mapped
implementation under different lbTHRES settings

Results on BC, PageRank and SpMV: Figure 45 shows the performance of BC,

PageRank and SpMV using various lbTHRES settings. Again, we report the speedup

achieved by our code variants over a thread-mapped implementation without load

balancing. We make the following observations.

First, similarly to SSSP, the speedup decreases as lbTHRES increases. This behavior is

not surprising: the load balancing threshold determines the number of iterations of the

outer loop that are processed in a block-mapped fashion, thus reducing the warp

divergence during the thread-mapped phase and the resulting core underutilization. In

other words, the lower the value of lbTHRES, the more load balancing will take place

through block-based mapping. Table 7, which shows how the warp execution efficiency

of dbuf-shared varies with lbTHRES, supports this observation. As can be seen, the lower

the value of lbTHRES, the higher the warp efficiency (and, consequently, the GPU

Table 6: Profiling data collected on SSSP (lbTHRES=32)

Templates	
Metrics	

warp	efficiency	 gld	efficiency	 gst	efficiency	
baseline	 35.6%	 15.8%	 3.2%	

dual-queue	 74.9%	 79.1%	 4.8%	
dbuf-shared	 75.7%	 94.3%	 50.4%	
dbuf-global	 72.3%	 89.1%	 8.5%	
dpar-naïve	 25.3%	 45.5%	 16.3%	
dpar-opt	 70.2%	 63.2%	 10.9%	

112

utilization). Note that the use of this parallelization template always improves the warp

efficiency over the baseline code. We observed similar trends with all other

parallelization templates but dpar-naïve.

Second, dual-queue performs better than the other code variants only on BC. Dual-

queue suffers from the overhead of the initial creation of the two queues. While this

overhead is limited for small datasets (e.g. Wiki-vote used by BC), its negative effect on

performance becomes more obvious on large datasets (e.g. CiteSeer used by PageRank

and SpMV).

Third, on these applications dbuf-shared performs worse than dbuf-global for low

values of lbTHRES and reports better or comparable performance for lbTHRES ≥ 128. This

trend can be explained as follows. Recall that both parallelization templates use a delayed

buffer to identify the large iterations of the outer loop that must be processed in the

second, block-mapped phase. Since dbuf-global stores this buffer in global memory, the

load gets redistributed across the thread-blocks during the second phase of the code (that

is, the content of the delayed buffer is partitioned fairly across thread-blocks). However,

this load redistribution across thread-blocks does not take place in the case of dbuf-

shared, which stores the buffer in shared memory and performs a single kernel call. The

probability of load imbalance across thread-blocks is higher for low values of lbTHRES,

Table 7: Warp execution efficiency (dbuf-shared)

Applications	
lbTHRES	

32	 64	 256	 1024	 baseline	
SSSP	 75.6%	 71.9%	 45.3%	 37.2%	 35.6%	
BC	 75.8%	 56.7%	 17.1%	 10.8%	 10.3%	

PageRank	 91.5%	 87.0%	 63.4%	 50.9%	 50.8%	
SpMV	 94.4%	 82.3%	 71.5%	 51.5%	 51.0%	

113

since in this case more work is added to the delayed buffer. However, when lbTHRES

increases, less work is added to the delayed buffer, thus decreasing the probability of

work imbalance across thread-blocks in the second phase of the code. When the amount

of load balancing is low, dbuf-global suffers from the overhead of launching the second

kernel. We used profiling data to support this observation. Specifically, we analyzed the

warp occupancy of these code variants (that is, the ratio of the average active warps per

active cycle to the maximum number of warps supported on a multiprocessor). For small

values of lbTHRES, dbuf-global reports a higher warp occupancy compared to dbuf-shared

(for example, for lbTHRES =32, the warp occupancy of dbuf-shared and dbuf-global is 18.3%

and 26.9%, respectively), indicating a better hardware utilization.

Finally, we observe that dpar-opt performs similarly to (or slightly worse than) dbuf-

shared. The nested kernel handling and launch overhead out shadows the benefit of

dynamically remapping the work spawned within nested kernels to the GPU hardware.

4.5 Workload Consolidation

Since the Kepler architecture, Nvidia has introduced in its GPUs a new feature, called

dynamic parallelism (DP), which makes it possible for GPU threads to dynamically

spawn GPU kernels. Dynamic parallelism has also been recently added to the OpenCL

2.0 standard. By supporting nested kernel invocations, this feature enables nested

parallelism on GPU, and can facilitate dynamic load balancing, data-dependent execution

and the parallelization of recursive algorithms. However, the effective use of DP is not a

trivial matter. Basic implementations of adaptive kernels that spawn child kernels on a

per-thread basis whenever new work is locally generated tend to perform a large number

114

of small kernel launches. It has been shown that, due to the runtime overhead associated

with nested kernel calls, these implementations often lead to significantly degraded

performances, even worse than those of flat parallel variants of the same algorithms [91-

93].

In this work, we address this problem and propose a workload consolidation approach

to improve the performance of applications relying on DP [121, 122]. Specifically, we

consolidate into a single nested kernel the workload belonging to kernels that would be

spawned by multiple GPU threads. We consider performing kernel consolidation at three

granularities: warp-, block- and grid-level, whereby the consolidation involves the

kernels launched by all the threads within a warp, all the threads within a block or the

entire grid, respectively. We evaluate our consolidation mechanisms on applications

exhibiting two computational patterns: parallel irregular loops and parallel recursion.

4.5.1 Dynamic Parallelism

Traditionally, only CPU threads can launch GPU kernels. Dynamic Parallelism, a feature

added to OpenCL 2.0 standard and supported by Nvidia GPUs with compute capability

3.5 and above, makes it possible for GPU threads to launch GPU kernels. Kernel

launches can be nested and the deepest nesting level supported is currently 24. Kernels

launched from different blocks or streams can execute concurrently, and up to 32

concurrent kernels are currently allowed on Nvidia GPUs. A parent kernel will return

only after all its child kernels have completed; however, the order of their execution is

unknown unless these kernels are explicitly synchronized by a cudaDeviceSynchronize

call. For each nesting level up to an explicit synchronization, parent kernels may be

115

temporarily swapped out to free up GPU resources and allow the execution of their child

kernels. Pending kernels due to either unresolved dependencies or lack of available

hardware resources are fed to a temporary buffer. Global memory data are visible to both

parent and child kernels, while shared and local memory variables are visible only within

the kernel where they are declared.

4.5.2 Application Characterization

We consider two computational patterns that can benefit from DP: irregular loops and

parallel recursion.

Irregular Loops - Irregular loops are characterized by an uneven work distribution

across loop iterations. For example, nested loops where the number of iterations of inner

loops varies across the iterations of outer loops are irregular. These loops can be found in

many applications, such as sparse matrix operations and graph traversal algorithms that

rely on the commonly used Compressed Sparse Row representation of matrix and graph

data structures [75]. The degree of parallelism within irregular loops is typically data

dependent [123-125] and known only at runtime. Due to their nature, the flat

parallelization of these loops can cause work imbalance across threads, possibly leading

to GPU underutilization and limited performance. For example, if loop iterations are

distributed equally to threads, the unbalanced work distribution across iterations (and

threads) will lead to warp divergence. Irregular loops can benefit from the use of DP for

load balancing [126]. Specifically, overloaded threads can spawn child kernels and assign

(part of) their work to them, thus limiting warp divergence.

116

Parallel recursion - Nested parallelism also arises in the presence of parallel

recursion. While some recursive algorithms can be made iterative through various code

transformation techniques (e.g. tail-recursion elimination, auto-ropes and other flattening

techniques [127-129]) and subsequently undergo flat parallelization, recursion cannot be

always eliminated. Before the introduction of DP on GPU, parallel recursion required

both CPU and GPU intervention. Specifically, the CPU would control the flow of

recursion and initiate the recursive calls, whose execution could then be offloaded to the

GPU in the form of parallel kernels. This approach requires one kernel launch for every

recursive call and incurs high CPU-GPU communication overhead. By enabling kernel

launches from GPU threads, DP allows the recursive control flow to reside directly on the

GPU. This, in turn, allows reducing the CPU-GPU communication and the kernel launch

overhead. The most natural way to implement a parallel recursive function on GPU is by

directly porting to this platform a CPU parallelization of that function and allowing each

GPU thread to spawn a recursive kernel whenever the CPU code would perform a

recursive call. As we will show, GPU implementations following this pattern often

perform a large number of small kernel invocations, leading to substantial kernel launch

overhead and hardware underutilization. Our proposed consolidation schemes target this

problem.

4.5.3 Motivation

In this section, we first present the basic use cases of dynamic parallelism. Then we show

how inefficient the basic implementation is and explain why using DP can lead to

117

performance degradation. These motivate us to propose our compiler-assisted workload

consolidation solution.

A. Basic DP-Code Template

Figure 46(a) shows a basic code template for parallel kernels that use DP [93]. As in all

GPU kernels, each thread (or thread-block) is assigned some data to process (or work

items). Each thread (thread-block) initially performs some work (prework) on the data

assigned to it. Then, depending on the outcome of a condition, the thread (thread-block)

either spawns a child kernel to execute some more work, or performs that work on its

own. Finally, the thread (thread-block) may optionally perform additional work

(postwork). Note that both irregular loops and recursive algorithms fit in this code

template. The only difference between these two computational patterns is the following:

in irregular loops parent and child kernels are different, and the child kernel is generally

used for load balancing purposes; in parallel recursion, parent and child kernels are

identical. Figures 46(b) and (c) illustrate this basic code template on two algorithms: one

with an irregular loop (single source shortest path), and the other with parallel recursion

(recursive tree traversal).

118

(a) Basic code template for kernels using dynamic parallelism

(b) Basic implementation of SSP with dynamic parallelism

(c) Basic code of tree traversal with dynamic parallelism

Figure 46: Basic-dp code template and sample codes

In the SSSP kernel, each

GPU thread processes the

neighbors of an assigned node.

Because the number of neighbors

may vary from node to node, the

workload may be unevenly

distributed across threads. To

address this problem, each thread

checks whether the amount of

work assigned to it

(neighbors.size) is larger than a

given threshold. If this is the case,

it spawns a child kernel and

delegates the work to it;

otherwise it performs the work on its own. Because the GPU hardware schedules

different kernels independently, this mechanism allows redistributing the work to the

GPU resources, potentially leading to better GPU utilization.

In the tree traversal kernel, each thread is assigned a child of a given node. Initially,

the thread checks whether child has no children. In this (base) case, the thread performs

leafnode_work; otherwise, it spawns a kernel recursively and delegates to it the

processing of its assigned node.

The examples above illustrate “basic” implementations of irregular loops and parallel

recursion that rely on DP. For irregular loops, DP is used to redistribute unbalanced work:

119

in this case, the thread (thread-block) executing an iteration of the loop invokes a nested

kernel to offload the excess work to it. In case of parallel recursion, this basic code

variant results from simply porting the CPU implementation of a parallel recursive

function to GPU. Although more complex implementations are possible, these basic code

variants require minimal effort from the programmer. However, as discussed below, this

basic use of DP can incur significant overhead and lead to poor performance.

B. Limitations of Dynamic Parallelism

The effectiveness of DP is affected by different factors: sources of runtime overhead and

GPU utilization. Below, we detail each of these aspects.

Kernel Launch Overhead - To launch a kernel, the CUDA driver and runtime need

to parse the parameters list, buffer the values of these parameters, and dispatch the kernel.

These steps have an associated overhead. This overhead is negligible when the number of

nested kernels is small, but can accumulate and become significant in the presence of

numerous kernel launches [92, 93].

Kernel Buffering Overhead - Kernels waiting to execute are inserted in a pending

buffer. Since CUDA 6, this buffer consists of two pools: a fixed-size pool and a variable-

size virtualized pool. The fixed-size pool incurs lower management overhead but by

default can only accommodate a maximum of 2048 pending kernels. When it becomes

full, pending kernels are fed to the virtual pool, which incurs extra management overhead.

Applications spawning a large number of nested kernels can exhaust the fixed-size pool

and experience performance degradation due to the virtual pool’s overhead. It is possible

to increase the capacity of the fixed-size pool through the CUDA function

cudaDeviceSetLimit. However, this will result in a higher global memory reservation.

120

Synchronization Overhead - If there exists explicit synchronization between parent

and child kernels, in order to free resources for the execution of child kernels, parent

kernels will be swapped out into global memory. For each level up to the maximum level

where they synchronize, up to 150 MB memory may be reserved for swapping. These

extra memory transactions are source of additional overhead.

Effect of the kernel configuration – It is well known that the full use of the GPU

hardware requires massive multithreading. CUDA currently allows up to 32 kernels to

execute concurrently on a GPU. However, if configured to use small thread

configurations, even 32 concurrent kernels may underutilize the GPU. Meanwhile, there

is a limit on the maximum number of blocks that can be concurrently active. Thus,

configuring nested kernels with a large number of blocks will limit the number of kernels

executing in parallel. As a result, it is important for programmers to carefully select

thread configurations that allow both good device utilization and desired level of

concurrency.

The kernel launch, buffering and synchronization overheads can be reduced by

limiting the number of kernel launches performed. In addition, to avoid GPU

underutilization, it is important to avoid small kernel configurations that would lead to

low occupancy even in the presence of kernel concurrency. In general, DP codes

resulting in a large number of small kernel invocations tend to experience poor

performance. In our previous work [92], we have shown that, due to the large number of

small kernel calls they invoke, DP codes following the basic template in Figure 1 can

underperform flat implementations of the same algorithms by up to a factor of 1000.

121

4.5.4 Methodology

In this section, we present our workload consolidation mechanism designed to avoid the

performance degradation associated with the basic use of dynamic parallelism described

in Chapter 4.5.3.

A. Workload Consolidation

The idea at the basis of workload consolidation is fairly simple: by aggregating kernels

spawned by different threads into a single or few consolidated kernels, it is possible both

to decrease the number of nested kernel invocations, thus limiting DP overhead, and to

increase the degree of multithreading of the nested kernels invoked, thus increasing their

GPU utilization. In order to perform workload consolidation, we buffer the work

associated to the kernels to be consolidated, and we defer the handling of this aggregated

work to the launch of one or more child kernels. Since in the SIMT model all threads

execute the same instructions on different data, in order for a thread to buffer work, it will

be sufficient for the thread to buffer the pointer(s) or index(es) to the data to be processed.

This method requires barrier synchronization between the buffer insertions and the

consolidated kernel launches.

This high level idea is illustrated in Figure 47. In the figure, the numbers in the array

indicate the amount of work assigned to each thread, and the numbers in red indicate

large workloads that need to be redistributed through the launch of nested kernels. In

Figure 47(a), two child kernels (K1 and K2) are invoked: one to process 326 and the other

to process 234 work items. Workload consolidation, illustrated in Figure 47(b), first

inserts the work associated to K1 and K2 into a consolidation buffer. It then launches a

122

(a) Basic implementation of dynamic parallelism

 (b) Dynamic parallelism with workload consolidation
Figure 47: Workload consolidation – illustration

single child kernel (Kcons) to process all the work in the buffer. Kcons will have a larger

thread configuration than K1 and K2.

B. Consolidation Granularity

CUDA programming model has four levels of parallelism: thread, warp, block and grid.

While threads, blocks and grids are exposed to programmers, warps are implicitly defined

as groups of 32 threads that execute in lockstep and have contiguous identifiers. In the

DP execution model, kernel launches are performed by threads. We consider three

consolidation granularities: warp-, block- and grid-level.

123

Warp-level consolidation uses a buffer to aggregate work from the threads within a

warp and launches one kernel per warp. This consolidation method can reduce the

number of kernel invocations at most by a factor of 32. The benefit of warp-level

consolidation is that the synchronization overhead is minimized because no additional

synchronization is required beside the implicit one due to SIMD execution.

Block-level consolidation aggregates work associated to threads within a block and

launches a kernel per block. This method can reduce the number of kernel invocations

beyond what allowed by warp-level consolidation. However, this consolidation scheme

requires a block-level synchronization (__syncthreads) after the buffer insertions, leading

to higher synchronization overhead than the warp-level variant.

Grid-level consolidation aggregates work from all threads in a grid and then

launches a single child kernel. Since CUDA does not provide global synchronization

within a kernel, this consolidation method requires a customized barrier synchronization

(we will discuss this aspect later). Because of this, grid-level consolidation suffers from

the highest synchronization overhead.

C. Kernel Transformations

The overall kernel transformation flow is shown in Figure 48. The input is DP-based

CUDA code annotated with the described pragma directive, and the output is the

consolidated CUDA code. The kernel transformation process consists of two steps: (1)

child kernel and (2) parent kernel transformation. For irregular loops, parent and child

kernels are different, and the two code transformations are applied separately to each. For

recursive computations, parent and child kernels are the same, and the two transformation

steps are applied to the single input kernel sequentially.

124

Figure 48: Kernel transformation flow

Child kernel transformation – This phase transforms the input child kernel into a

consolidated child kernel. The new kernel fetches work from the consolidation buffer and

processes that work according to the code in the input child kernel. Whenever possible,

we generate moldable kernels [130] (that is, kernels with tunable kernel configuration).

The way the original code is mapped to threads and blocks in the consolidated kernel

125

depends on the configuration of the input child kernel. Specifically, we identify the

following cases:

Solo thread: The input child kernel consists of a single block and a single thread (e.g.

quick sort in CUDA SDK). In the consolidated child kernel, each thread will fetch a work

item (if available) from the consolidation buffer, and it will process that work item

exactly as the original kernel does. To make the kernel moldable, we allow threads to

fetch work from the buffer repeatedly until the buffer becomes empty.

Solo block: The input child kernel consists of a single block with multiple threads,

and these threads operate cooperatively. In the consolidated child kernel, each block will

fetch a work item (if available) from the consolidation buffer, and the threads within the

block will cooperatively process that work item as in the original kernel. To make the

kernel moldable, we allow blocks to fetch work from the buffer repeatedly until the

buffer becomes empty. If the original child kernel is moldable, the number of threads per

block in the generated child kernel will also be tunable; else, the two kernels will have

the same block size.

Multi-block and multi-thread: When the original child kernel uses multiple blocks and

threads per block, each work item is processed by all threads cooperatively. In this case,

in the transformed kernel we use a for-loop to wrap the code of the original child kernel.

The generated kernel will extract work from the buffer iteratively, and all threads will

process cooperatively each work item. In this case, the transformed kernel is moldable

only if the original kernel is such.

Parent kernel transformation – We divide the parent kernel into three sections:

prework, child kernel launch, and postwork (Figure 46(a)). The prework and postwork

126

represent the processing done before and after the child kernel launch, respectively. Many

kernels do not include any postwork. The code transformations required in the parent

kernel are: (1) buffer allocation (before prework); (2) prework insertion; (3) replacement

of the child kernel launch with buffer insertions; (4) insertion of the required barrier

synchronization primitive; and (5) postwork transformation. As shown in Figure 47, steps

(1)-(3) are fairly mechanic; however, steps (4) and (5) require some consideration.

If the original kernel includes barrier synchronization between the child kernel launch

and the postwork, such synchronization must be preserved in the consolidated parent

kernel. For warp-level consolidation, this problem is automatically solved by the implicit

barrier synchronization due to the lockstep execution of the threads within a warp. For

block-level consolidation, CUDA provides a block-level barrier synchronization

primitive (__syncthreads). Grid-level consolidation requires more thought. First, the only

global barrier synchronization provided by CUDA is the implicit one at the end of a

kernel launch. However, using this mechanism would require splitting the parent kernel

into two: a kernel handling the prework and the child kernel launch, and a kernel

handling the postwork. In addition, CPU intervention would be required to invoke the

postwork-kernel. This would be problematic in case of recursion, as it would require

returning the control to the CPU after each child kernel launch, and to have calls to the

postwork-kernel stacked on CPU. In other words, the CPU would acquire full recursion

control, leading to the overheads discussed in Chapter 4.5.3. To address this problem, we

implement a custom global synchronization mechanism that can be invoked from the

GPU (see Chapter 4.5.5.E). Second, a global synchronization may cause a deadlock when

active blocks on GPU are suspended at the global barrier while pending blocks are

127

waiting for active blocks to finish. To address this problem, we consolidate the postwork

into a single kernel. The last block to complete its buffer insertions will then launch the

consolidated child kernel, wait for its completion and then launch the consolidated

postwork kernel. The other blocks will simply exit after completing their buffer insertions.

Finally, the required barrier synchronization between the child kernel launch and the

postwork is handled by inserting a cudaDeviceSynchronize call between the invocations

of these two consolidated kernels. Dependencies between the prework and the postwork

are handled by duplicating in the postwork the relevant portions of prework.

D. Compiler Directive Design

In order to direct the code transformations performed by the compiler, we provide a

single directive that can be applied to generic DP-based code following the template in

Figure 46. This directive allows identifying the child kernels to be consolidated and the

work to be buffered. The grammar of the directive is: ‘#pragma dp [clause+]’. Table 8

lists the clauses available, which specify the consolidation granularity, the type and size

of the consolidation buffer, the indexes or pointers to the work items to be buffered and

Table 8: Clauses of our workload consolidation compiler directive

Clause Argument Description Optional

consldt granularity: warp, block, grid Workload consolidation granularity No

buffer

type: default, halloc, custom Buffer allocation mechanism

Yes perBufferSize: integer or variable name Buffer size

totalSize: integer Total size of all buffers

work varlist: list of indexes or pointers to work
List of variables to be stored in

buffer
No

threads thread number: integer
Number of thread/block for

consolidated kernel
Yes

blocks block number: integer
Number of blocks for consolidated

kernel
Yes

128

the configuration of the consolidated kernel. Some of these clauses are optional and

programmers can use them for further optimization and performance tuning. For instance,

developers can optionally specify the configuration of the consolidation buffers and the

one of the child kernels. We provide more details on these options in Chapter 4.5.4.E.

Figure 49(a) illustrates the use of our proposed compiler directive to annotate the

original CUDA code. In this case, block-level consolidation is selected, the buffer can

have at most 256 elements and is instantiated with the default CUDA allocator, and

variable curr is buffered. The generated code is shown in Figure 49(b) (in this particular

case, the synchronization primitive in use is __synchthread).

E. Implementation Details

This section describes the implementation details of our source-to-source compiler,

which converts annotated CUDA code into consolidated GPU kernels. Our compiler is

implemented using the ROSE compiler infrastructure [131].

Rose compiler infrastructure – ROSE (version 0.96.a) incorporates Edison Design

Group (EDG) Frontend 4.0 that supports the parsing of CUDA, C and C++ code. We use

its parser building APIs to implement the parser for the pragma directive. The pragma

information is linked to the abstract syntax tree (AST). Based on the directive

information and the AST, we customize the traversal and transformation functions to

generate a new AST, which is then fed to and unparsed by the backend of ROSE to

generate the consolidated parent and child kernels.

Consolidation Buffers – The design of the consolidation buffers involves several

considerations, some of them leading to the need for the directive clauses listed in Table I.

129

(a) Annotated CUDA code (parent kernel)

(b) Generated CUDA code (parent kernel)

Figure 49: Example of use of our workload
consolidation compiler directive

Memory selection: The

consolidation buffer can be

either implemented in global or

in shared memory. Global

memory provides slower access

but is visible to both parent and

child kernels. Conversely,

shared memory is faster but

private to each block (and thus

not visible within nested

kernels). While parent kernels

could fill temporary buffers in shared memory and then copy them into global memory to

allow access by child kernels, the limited size of shared memory makes this solution not

scalable. As a result, we store the consolidation buffers solely in global memory.

Dynamic allocation method: For the allocation of the consolidation buffers, we allow

three alternatives: (1) the default allocator provided by CUDA; (2) the open-source halloc

memory allocator for GPU [132]; and (3) a customized allocator that leverages a pre-

allocated memory pool.

 Buffer size for customized allocator: Due to the irregular nature of nested parallelism,

the buffers required by different consolidated kernels may vary in size. When using the

pre-allocated memory pool, the programmer needs to set both its size and the size of the

portion of the memory pool allocated to each buffer (recall that in warp/block-level

consolidation every warp/block uses a consolidation buffer). The size of the pre-allocated

130

memory pool (500MB by default) can be specified using the totalSize argument in the

pragma directive. The per-buffer size (perBufferSize) is predicted as:

totalThread * totalBuffVar * const

where totalThread is the total number of threads from which we consolidate the child

kernels, totalBuffVar is the number of buffered variables (indexes or pointers) per work

item; and const is a constant (default value: 4) that estimates the number of work items

assigned to a single thread. We have observed that, in most cases, the perBufferSize can

be determined from a runtime variable that indicates a property of the current work item.

For instance, for the tree applications in our benchmarks, the buffer size can be derived

from the variable that indicates the number of children of a given node. If the user cannot

provide such variable, a constant may also be specified to its best estimation. Our

customized allocator can utilize the information from the #pragma to allocate properly

sized buffers from the pre-allocated global memory pool for different consolidation

granularities. Notice that for grid level consolidation, only one buffer is required for each

grid: in this case, the grid can directly utilize the whole memory pool and the

perBufferSize is ignored.

Global Barrier Synchronization on GPU – The global barrier synchronization is

implemented using a counter whose value is initialized to the number of blocks executed.

When a block reaches the barrier, the first thread in the block decrements the counter by

one atomically. A counter decrement to zero indicates that the last block has reached the

barrier.

Kernel Configuration Handling – When launching kernel calls, it is common

wisdom to select a configuration that achieves high device occupancy, which is defined

131

as the ratio of the number of active warps to the number of maximum active warps that

the device can host. Although higher occupancy does not always guarantee higher

performance, it usually produces a good enough result that can be further tuned. The use

of the CUDA Occupancy Calculator allows finding a kernel configuration (B, T) that

maximizes the occupancy for a single kernel. However, concurrent kernels must share the

GPU resources, and thus such configuration will not be optimal for concurrent kernels

initiated with DP [130]. To allow multiple kernels to be concurrently active on GPU,

programmers need to downgrade the configuration they obtain by using the Occupancy

Calculator. We refer to Kernel Concurrency (KC) as the maximum number of

concurrently active kernels. The highest KC supported by CUDA as of compute

capability 3.5 is 32. Due to the hardware resource limitations, a concurrency of X may be

achieved by downgrading the configuration (B, T) to ([B/X], T). We name such

configuration KC_X.

For grid-level consolidation, at any given time there is only one active consolidated

kernel that processes all the work from all threads in the parent kernel. Hence, we expect

the best configuration to be the one that maximizes the device occupancy for a single

kernel. Thus, we use KC_1 as the default kernel configuration.

For block-level consolidation, each block in the parent kernel will spawn a

consolidated kernel that will handle a smaller amount of work collected from a block in

the parent kernel. We decide to downgrade the configuration by a factor of 16 and use

KC_16 as the default configuration.

For warp-level consolidation, each warp in the parent kernel will spawn a

consolidated kernel that handles an even smaller amount of work collected from a warp,

132

and a maximum concurrency of 32 can be easily achieved. Thus, we use KC_32 as the

default kernel configuration.

Because users may need to fine-tune the configuration for their applications to

achieve the best performance, we also provide #pragma clauses that allow for user-

specified kernel configurations.

4.6.4 Experimental Evaluation

In this section, we evaluate our proposed workload consolidation methods on various

applications and datasets. Specifically, we compare the generated consolidated kernels

with the original, basic DP kernels (basic-dp code template in Figure 46) and with flat

GPU implementations of the considered algorithms (denoted by np-dp). In all the figures,

warp-level, block-level and grid-level refer to the consolidation granularity considered.

We first evaluate the performance of using different memory allocators to implement

the consolidation buffers. We then evaluate the effectiveness of our method to select the

kernel configuration of nested kernels by comparing the resulting performance with the

best performance achieved using the optimal kernel configuration found by exhaustive

search. We then study the overall performance of the different consolidated kernels using

the optimal allocator and kernel configuration. Finally, we use profiling to study the

effect of our consolidation schemes on hardware utilization.

Hardware and Software Setup: We run all experiments on a workstation powered

by two 6-core Xeon E5-2620 CPUs and a NVIDIA K20c GPU. We use CUDA runtime

and compiler version 7.0. We use Nvidia Visual Profiler to collect the profiling data. We

average the results of the experiments over multiple runs.

133

Benchmark implementations: The benchmarks used in our evaluations are Single

Source Shortest Path (SSSP), Sparse Matrix Vector Multiplication (SpMV), PageRank

(PR), Graph Coloring (GC), Recursive Breadth-first Search (BFS-Rec), Tree Heights

(TH) and Tree Descendants (TD). Specifically, we consider the basic-dp and no-dp/flat

implementations from [75, 92, 117, 118]. We use basic-dp implementations as baseline,

and report the performance of flat kernels (no-dp) and consolidated kernels with different

consolidation granularities. Since flat kernels achieve better performance than CPU

implementations, we do not report results of CPU implementations.

Datasets: For applications based on graphs and sparse matrices, the datasets used are

CiteSeer (used in SSSP, SPMV, PG) and Kron_log16 (used in GC, BFS-Rec), both from

the DIMACS challenges [133]. CiteSeer is a paper citation network with about 434

thousand nodes, 16 million edges and a node outdegree that varies from 1 to 1,199 across

the graph (with an average value of 73.9). Kron_log16 has 65 thousand nodes and 5

million edges, with a node outdegree that varies from 8 to 36,114. For the trees, we use

datasets from [92]: dataset1 is a depth-5 tree whose nodes have a number of children

varying from 128 to 256 and only half of the non-leaf nodes have children; dataset2 is a

depth-5 tree whose nodes have a number of children varying from 32 to 128 and all non-

leaf nodes have children.

A. Implementation of the Consolidation Buffers

As explained in Chapter 4.5.4.E, the consolidation buffers can be implemented using

three allocators: the default CUDA malloc allocator, the open-source high performance

Halloc allocator [132] and our customized allocator. Figure 50 shows the performance

results of workload consolidation on SSSP using these three allocators. In the figure,

134

Figure 50: Performance of different buffer implementations (SSSP)

default refers to the CUDA malloc/free primitives, halloc to the Halloc allocator, and

pre-alloc to our customized allocator. We can see that the default and halloc allocators

achieve similar results in all cases. For block-level consolidation, the performance of both

default and halloc are worse than that of the flat GPU code (no-dp), while pre-alloc

achieves roughly 3x speedup over no-dp. This is due to the higher overhead introduced

by default and halloc on every allocation operation. This overhead also contributes to a

5.7x performance gap between pre-alloc and default/halloc in case of block-level

consolidation. The performance degradation of default and halloc is even worse (20x

slowdown) for warp-level consolidated code, which requires more frequent buffer

allocation operations. Since grid-level consolidation only requires a single buffer, in this

case there is no obvious performance difference among these three allocators. In the

remaining experiments, we only show the results reported using the better performing

pre-alloc allocator.

135

Figure 51: Performance of different kernel configurations (TD)

B. Selection of the Kernel Configuration

In Chapter 4.5.4.E we discuss three configurations for consolidated kernels: KC_1,

KC_16 and KC_32. These configurations allow the consolidated kernels to achieve

concurrency levels (maximum number of concurrently active kernels) of 1, 16 and 32,

respectively. We compare these configurations with two additional configurations

schemes, 1-1 mapping and exhaustive search. The 1-1 mapping configuration indicates

that the kernel is configured to have as many blocks (or threads, in the case of thread-

mapped child kernels) as the number of items in the buffer. The exhaustive search

configuration is the best configuration we find from exhaustively searching the

configuration space [134]. In Figure 6 we report the results on tree descendants for all

considered consolidation granularities over two datasets.

We first compare the three proposed configurations. KC_1 works best for grid-level

consolidation; KC_16 works best for block-level consolidation; and KC_32 works best

for warp-level consolidation. This meets our expectations and is coherent with the

analysis presented in Chapter 4.5.4.E. We then compare KC_1 for grid-level, KC_16 for

136

block-level and KC_32 for warp-level consolidation with 1-1 mapping. As can be seen,

our solution performs much better, especially for block- and warp-level consolidation.

This is because the varying block size of 1-1 mapping lowers the Kernel Concurrency

and increases the size of the pending queue, leading to higher overhead and degraded

performance. At last, we compare our scheme with the best configuration found by

exhaustive search. We observe that the configurations selected by our method (KC_1 for

grid-level, KC_16 for block-level and KC_32 for warp-level consolidation) achieve on

average 97% of the performance of the optimal configuration found by exhaustive search.

The same experiments conducted on the other benchmarks using various datasets

report similar results. In conclusion, our configuration selection method for nested

kernels is effective and leads to nearly optimal performance. In all the remaining

experiments, we use KC_1, KC_16 and KC_32 configurations for kernels consolidated at

the grid-level, block-level and warp-level granularities, respectively.

C. Overall Performance

Figure 52 presents the overall speedup of kernels consolidated at different granularities

over basic-dp. The chart also reports the speedup achieved by flat parallel code (no-dp)

over the baseline. As can be seen, the basic-dp implementation suffers from severe

performance degradation due to the significant kernel management overhead and the

limited GPU utilization. Even compared with the flat GPU kernels, basic-dp reports

slowdown factors from 80 to 1100. Warp-level consolidation improves the performance

of basic-dp on average by a factor of 1000x but in some cases is not significantly better

than the flat GPU kernel (no-dp). Block-level consolidation outperforms warp-level

consolidation, and grid-level consolidation achieves the best performance across all

137

Figure 52: Overall speedup over basic dynamic parallelism

benchmarks. Even if warp-level consolidation has the benefit of very low synchronization

overhead, when compared to block- and grid-level code, it suffers from the more

significant overhead introduced by the additional child kernel launches. Grid-level

consolidation reduces the number of child kernel launches dramatically, and thus

achieves the best performance despite its extra synchronization overhead. On average,

warp-level, block-level and grid-level consolidation outperform basic-dp by a factor of

999, 1357 and 1459, respectively, and no-dp by a factor of 2.18, 3.26 and 3.78,

respectively.

D. Profiling Results

In this section, we analyze the improvements in hardware utilization achieved by

workload consolidations.

Figure 53 shows the overall warp execution efficiency, which is defined in the CUDA

documentation [135] as “the ratio of the average active threads per warp to the maximum

number threads per warp”. For each application, we show the results reported by the

basic-dp implementation and the three considered workload consolidation schemes. On

138

Figure 53: Warp execution efficiency across benchmarks

top of the bars we report the number of child kernel invocations performed in each case.

First, we can observe that the proposed consolidation methods reduce the number of

kernel invocations to 0.07%-14.48% of the ones performed by the corresponding basic-

dp code. For instance, in PageRank, consolidation reduces the number of kernel

invocations from 6.7 million (basic-dp) to 380 thousand (warp-level), 113 thousand

(block-level) and 40 (grid-level). Second, average warp execution efficiencies are

improved from 33.2% (basic-dp) to 69.3% (warp-level), 75% (block-level) and 83.1%

(grid-level). The warp execution efficiency measured by Nvidia profiler includes not only

parent and child kernels execution, but also child kernel launch overhead. Child kernel

launches will take more clock cycles than buffer insertion operations, decreasing the

warp efficiency. Consolidation replaces kernel launches with buffer insertions; as a result,

it reduces the overhead of warp divergence and leads to improve overall warp efficiency.

139

Figure 54: SMX occupancy (achieved hardware utilization)

Figure 54 shows the achieved streaming multiprocessor occupancy, which measures

the ratio of average active warps over maximum warps supported per streaming

multiprocessor [135]. On average, workload consolidation improves this metric from

27.9% (basic-dp) to 39.3% (warp-level), 60.3% (block-level), and 82.9% (grid-level).

Recall that in basic-dp each thread launches a “small” kernel. Hence, the GPU device is

filled with many such “small” concurrent kernels. As mentioned in Chapter 3.5.3.B, there

is a hardware limitation on the maximum number of concurrent kernels that a GPU can

accommodate. On K20c, this limit is 32. Therefore, in the basic-dp case, thirty-two

“small” concurrent kernels will underutilize the hardware. Workload consolidation, on

the other hand, increases the average child kernel size and improves resource utilization.

140

Figure 55: DRAM transactions ratio over basic dynamic parallelism

To measure the efficiency of memory accesses, we monitor the numbers of DRAM

transactions (read+write) performed by each kernel. Figure 55 shows the ratio between

the number of DRAM transactions performed by each consolidated kernel and those

performed by the basic-dp code. In all cases, the total DRAM transactions are reduced.

Specifically, warp-level, block-level and grid-level consolidation lead to 60%, 34% and

36% of the original transactions, respectively. This reduction in memory transactions can

be motivated as follows: first, the consolidation increases the average child kernel size,

thus leading to better caching behavior and memory bandwidth utilization; second, a

decrease in the number of nested kernels will lower the chance of swapping parent

kernels out, therefore reducing the memory transaction overhead associated to kernel

swapping; third, the decreased number of nested kernels reduces the use of the virtualized

pool within the pending queue, lowering the overhead of virtual pool management. It can

also be noticed that, for some benchmarks (e.g. SpMV), block-level achieves better

memory utilization than grid-level consolidation. This is due to the overhead associated

to our global synchronization mechanism.

141

Chapter 5 Deep Neural Network on CPU-GPU

Deep learning is a branch of machine learning that uses a layered architecture of data

processing stages for pattern recognition. Due to its effectiveness in many applications,

deep learning has gained popularity in both academia and industry. Convolutional neural

networks (CNNs) are the most successful models for deep learning, and they have been

used in various domains, including computer vision [136] and speech recognition [137].

5.1 Related Work

With the emergence of powerful GPUs and the availability of large data sets for training,

we have witnessed a significant improvement of deep CNNs in terms of training time and

accuracy. The Visual Geometry Group (VGG) at University of Oxford has designed a 16-

and a 19-layer model with a 7.4% and a 7.3% top-5 error rate, respectively [138].

Microsoft has recently proposed a NN model with 152 layers – 8x deeper than the VGG

nets – reporting a 3.57 % error rate [139]. This fast development has led to the

proliferation of applications based on NNs. Examples of emerging applications based on

NNs include: auto tagging [140], the estimation of a person’s pose [141], and the

generation of a descriptive sentence from an image [142]. While previous work has

focused on performance, our paper focuses on evaluating the energy efficiency of deep

neural networks on CPUs and GPUs.

Although the mainstream approach for training deep convolutional neural networks is

using CPUs and GPUs, researchers have recently started to explore the use of other

architectures and devices, including FPGA [143, 144], RRAM [145], neuromorphic

142

processors [146] and Tetra-Parallel architecture [147]. These hardware implementations

are specifically tailored to convolutional neural networks and yield impressive results in

terms of performance and energy efficiency. However, these hardware innovations are

still at an early stage and it is urgent to understand the power and energy behavior of

commonly used neural network frameworks on CPU and GPU – the main goal of our

paper.

In spite of the advancement in the development of deeper and more complicated

neural network structures, research on investigating the energy behavior of different

neural networks and software frameworks is still in its infancy. In its white paper [148],

Nvidia provides limited power and energy consumption results for CNN inference on two

frameworks. Our paper distinguishes itself by providing a comprehensive study on the

energy-efficiency of deep neural network training that covers different frameworks,

different platforms and different hardware settings.

5.2 Energy Efficiency

5.2.1 Motivation

In recent years convolutional neural networks (CNNs) have been successfully applied to

various applications that are appropriate for deep learning, from image and video

processing to speech recognition. The advancements in both hardware (e.g. more

powerful GPUs) and software (e.g. deep learning models, open-source frameworks and

supporting libraries) have significantly improved the accuracy and training time of CNNs.

It is now possible to train large and complex neural networks in reasonable time on

143

relatively inexpensive hardware. This has led to the rapid growth of neural network-based

deep learning algorithms.

However, the race for speed and accuracy comes at the cost of energy consumption,

an aspect that has been overlooked in previous work. While the classification accuracy

has traditionally been considered as the primary metric of success for image and video

recognition applications, the community has recently recognized the need for deep neural

network implementations that are both accurate and energy efficient. As a result, in 2015

IEEE Rebooting Computing has launched the “Low-Power Image Recognition Challenge”

(LPIRC), an initiative aimed to promote the design of energy efficient image

classification methods. Currently, research in designing energy efficient CNNs is still in

its infancy. The knowledge on the power consumption behaviors of different CNNs and

training frameworks is very limited. With the size of data sets grows exponentially, the

energy demand for training such data sets increases rapidly. It is highly desirable to

design deep learning frameworks and algorithms that are both accurate and energy

efficient.

Modern GPUs comprise hundreds to thousands of compute cores and can provide

high computational power and throughput. As a result, GPU computing has become the

de-facto approach for CNNs training [149]. Meanwhile, Intel has recently released the

Intel Deep Learning Framework (IDLF) [150], which provides high performance CNNs

training on CPU platforms. While Nvidia claims that its GPU framework reports a 11x-

14x speedup over the CPU version of Caffe on an Intel IvyBridge processor [151], S.

Hadjis et al. [152] point out that Nvidia’s comparison is based on an unoptimized CPU

baseline, and they introduce CPU optimizations reducing the GPU-CPU performance gap

144

to only 1.86x. None of these analyses, however, consider the energy efficiency of training

the neural networks.

In this work, we conduct a comprehensive study on the power behavior and energy

efficiency of CNNs on both CPUs and GPUs [153]. We evaluate popular deep learning

frameworks using energy-related metrics and, for each of these frameworks, we provide

accurate power measurements using a set of carefully selected networks and layers. We

conduct our evaluation on different processor architectures (i.e., Intel Xeon CPUs, Nvidia

Kepler and Maxwell GPUs) and explore the effect of a variety of hardware settings to

facilitate the design of energy efficient deep learning solutions.

5.2.2 Methodology

A. Introduction to CNN Frameworks

In order to be practically applicable, CNNs require software frameworks that allow high

performance training of large-scale networks including millions of parameters. Popular

open-source CNN frameworks include: Caffe [154], Torch [155], TensorFlow [156],

MXNet [157], Nervana [158] and CaffeConTroll [152]. All these frameworks except

CaffeConTroll offer both CPU- and GPU-support. In all cases, GPU support is based on

the Nvidia cuDNN library [159]. In addition to the cuDNN-based implementation, Caffe

and Torch include custom GPU implementations of convolutional layers, pooling layers

and activation functions.

B. Experimental Setup

Benchmark Suite: In our experimental evaluation we use Convnet [160], an open-source

benchmark that includes most publicly accessible implementations of CNNs. This

145

benchmark is designed to measure the execution time of the forward and backward

propagation of different layers/networks. To obtain accurate power measurements, we

apply minor modifications (as described in [148]) to the Convnet benchmark (e.g., we

remove unnecessary timing and logging code). We test the training phase (forward and

backward propagation) and configure each run to have multiple (>100) iterations, which

simulates the real use of these frameworks. Also, by default, the batch size is set to 128,

which is a commonly used value.

Neural networks: In our evaluation we use four ImageNet winner neural network

models: AlexNet v2 [161], OverFeat [162], VGG_A [138] and GoogleNet [163]. These

networks have been proven successful models and are included in the Convnet

benchmark.

Hardware: We perform all experiments on a single machine including a 16-core Intel

Xeon E5 - 2650 v2 @ 2.6GHz with Hyper-Threading enabled, an Nvidia Tesla K20m

GPU with 5GB memory and an Nvidia Titan X GPU with about 12GB memory. The

machine has 32GB DDR3 main memory and a 128 GB SSD hard drive, and runs CentOS

v7.

Software: The drivers, libraries and frameworks used in our experiments are: CUDA

7.0, cuDNN v3, OpenBLAS 0.2.16, Caffe (commit ID be163be), Torch 7 (commit ID

eb8d7f2), and TensorFlow (commit ID fd464ca), MXNet (commit ID d25053) and

CaffeConTroll (commit ID 8191f6c). The CPU and DRAM power data are collected via

Intel’s Running Average Power Limit (RAPL) interface [164] and the GPU power is

obtained via the Nvidia System Management Interface [165].

146

Figure 56: Comparison between native GPU implementation and cuDNN v3 library

in Caffe

5.2.3 Overall Results on CPU & GPU

A. Native GPU implementations versus cuDNN

Because GPUs can provide more computational power than general-purpose CPUs, most

deep learning frameworks rely on GPUs to provide fast training and inference. To

facilitate GPU-accelerated deep learning, Nvidia released the cuDNN library, which

includes highly optimized implementations of common operations found in neural

networks (e.g. convolution, pooling). Although some early developed frameworks like

Caffe and Torch have their own GPU implementations, newer frameworks (e.g.

TensorFlow) rely on cuDNN for neural network related operations. In this section we

compare native GPU implementations of neural network operations with those found in

the cuDNN library.

Figure 56 presents the results of this analysis on the Caffe framework, which can be

configured to either use a native GPU implementation or rely on the cuDNN library. We

tested 500 iterations of forward and backward propagation with a batch size of 128. In the

figure, the bars represent the energy consumption per image processed (left y-axis).

147

Specifically, the bottom (red) and top (blue) part of each bar indicate the energy

consumption of GPU and CPU, respectively. The two lines show the average power

consumption (in Watts) of GPU and CPU (idle); the power consumption scale is on the

right y-axis. On top of each bar we report the execution time of a single iteration. In the

experiments we use two Nvidia GPUs: a K20m and a Titan X (shown as K20 and TX

along the x-axis, respectively) and four networks (AlexNet, OverFeat, VGG_A and

GoogleNet). Due to its limited memory capacity, we could not run the VGG_A and

GoogleNet networks on the K20m GPU.

As can be observed, cuDNN yields higher GPU power and lower energy consumption

than native GPU code on both K20m and Titan X. The increase in power consumption

from native GPU kernel to cuDNN varies from 2% (OverFeat on Titan X) to 48%

(GoogleNet on Titan X). On average, cuDNN increases power consumption by 16% and

reduces energy consumption by 42%. This can be explained as follows. Due to its higher

GPU utilization, cuDNN leads to higher power consumption than native GPU code.

However, by significantly reducing the training time, cuDNN diminishes the total energy

consumption.

If we compare the power and energy consumption of the CNN code on different GPU

platforms, we can conclude that, although Titan X consumes more power than K20m, it

is more energy-efficient. Taking AlexNet as an example, when moving from K20m to

Titan X, the energy consumption is reduced by 15% (for native GPU code) and by 54%

(for cuDNN). Compared to K20m, Titan X can deliver more computational power,

leading to higher power consumption but also to lower execution time. The reduction in

148

execution time is significant enough to yield better energy efficiency despite the higher

power consumption.

Figure 56 shows another interesting fact: the CPU consumes a significant amount of

energy although it mostly is in the idle state, which should not be ignored. As can be seen,

the CPU idle power is about 67w in all cases, while the GPU power varies from 104w to

134w on K20m and from 204w to 228w on Titan X. In general, the CPU accounts for 22%

to 40% of the total energy consumption. This indicates that, to be energy-efficient, a

CNN framework should utilize both CPU and GPU during the training phase.

Since cuDNN leads to better performance and is more energy-efficient than native

GPU implementations of neural network related kernels, we use cuDNN as the default

GPU library in all remaining experiments.

B. GPU frameworks

There are many frameworks that use GPUs to accelerate CNN training. We selected five

popular frameworks: Caffe [154], Torch [155], TensorFlow [156], MXNet [157] and

Nervana [158]. The first four support both K20m and Titan X, while Nervana supports

only Titan X. Since Nervana supports 16- and 32-bit floating-point arithmetic, for this

framework we have two settings (TX-fp16 and TX-fp32, respectively). Figure 3 reports

the results obtained by running forward and backward propagation on AlexNet using a

batch size of 128. As in Figure 2, the bars represent the energy consumption per image

(y-axis on the left), the lines show the CPU/GPU power in Watts (y-axis on the right),

and the numbers on the bars represent the execution time of each iteration.

149

Figure 57: Comparison among different frameworks on K20m and TitanX GPUs

As can be seen, in these experiments Titan X consumes an average power of 227w,

74% more than K20 (130w). Torch outperforms other frameworks in terms of energy

efficiency on K20m, and performs similarly to Caffe and Nervana on Titan X. Using 16-

bit floating-point arithmetic allows a 10% energy reduction over single precision

arithmetic. We can again observe that CPU idle power cannot be ignored, and is

especially significant in the case of K20 (since this GPU leads to longer execution times).

C. CPU frameworks

In this section we study the energy and power behavior of CNN frameworks when using

only CPUs. Because of its wide use and flexibility, in this set of experiments we focus on

Caffe and its derivatives. Caffe supports three CPU libraries (Atlas, OpenBLAS and

MKL) that can be statically configured. In our evaluation, we also consider Caffe-

OpenMP (an optimized CPU version of Caffe) [166] and CaffeConTroll (a Caffe’s

derivative that uses an optimization called “lowering” [152]). The results of this

comparison are shown in Figure 58.

150

Figure 58: Comparison among CNN frameworks on CPUs

The performance of these frameworks and libraries on CPU is significantly affected

by the degree of multithreading. Our machine has 16 physical cores and all the CPU

versions are configured to spawn at most 16 threads. To accurately measure power and

energy consumption of CPU-based frameworks, we also measure and report the DRAM

power data.

As can be seen from Figure 58, the average power consumption of different CPU-

based frameworks varies from 103w to 188w. Compared to CPU, DRAM consumes a

relatively small portion of energy (11%). Among these CPU versions, Caffe-OpenMP is

the most energy-efficient and consumes 2.9 Joules per image processed. It is worth

noting that while Caffe-OpenMP is more energy efficient than other CPU

implementations, it consumes over twice the amount of energy than all considered GPU

frameworks. We can conclude that CPUs are generally less energy-efficient than the

GPUs for training CNNs.

151

Figure 59: Breakdown of energy consumption of AlexNet and OverFeat on K20

and CPU using Caffe

5.2.4 Effect of NN and Batch Size Configuration

A. NN Structure

In this section, we focus on the impact of the network’s structure on energy efficiency.

To this end, we disassemble AlexNet and OverFeat into four types of layers

(convolutional, pooling, fully connected, and ReLU) and measure the distribution of the

energy consumption across these layers. In order to ensure that our approach is accurate,

we verified that the cumulative energy consumption results from all layers are coherent

with the measurements on the integrated network. In Figure 59 we show the percentage

breakdown of the energy consumption across layers on GPU and CPU using Caffe. As

can be seen, convolutional layers are predominant and consume 87% of the total energy

consumption. The second most power-hungry layers are fully connected layers, which

account for 10% of the total energy consumption. Pooling layers and ReLU layers (which

apply activation functions) account for less than 5% of the energy consumption. This

152

trend is even more noticeable for OverFeat. In OverFeat, the convolutional layers have

more filters (leading to a larger number of neurons) than in AlexNet. Although OverFeat

has the same number of layers as AlexNet, its convolutional layers consume a larger

portion of the energy, as high as 95%, 93% and 92% on K20m, Titan X and CPU,

respectively. From this analysis we can conclude that, in order to optimize energy

consumption of deep CNNs, the priority should be on improving the energy efficiency of

the convolutional layers.

B. Batch Size

The batch size is an important setting when training a neural network. Larger batch sizes

lead to more images being packed into a batch and sent to the network for training in a

single iteration. Intuitively, larger batches allow more data-level parallelism. However,

loading a larger batch requires more memory to store the data, possibly exhausting the

limited GPU memory.

Figure 60 reports the power and energy consumption of AlexNet on K20, Titan X and

CPU when the batch size varies from 8 to 256. On all three hardware platforms,

increasing the batch size leads to linear growth in power. Small batch sizes (e.g., 8 or 16)

cause CPU and GPU under-utilization. An increase in the batch size will yield higher

hardware utilization, and, consequently, an increase in power consumption. However, as

can be seen, increasing the batch size can reduce the energy consumption per image. For

instance, when the batch size is increased from 8 to 16, the energy consumption per

image is reduced by 13%, 18% and 31% on K20, Titan X and CPU, respectively. When

the hardware utilization saturates, however, a further increase in the batch size does not

further improve energy consumption. For example, when increasing the batch size from

153

Figure 60: Power and energy consumption on K20m, Titan X and CPU with

different batch sizes using Caffe

128 to 256, the energy consumption per image reduces only by 4% on K20 and by 7% on

CPU, while Titan X does not benefit from large batch sizes.

5.2.5 Effect of Hardware Settings

In this section, we analyze the impact of different hardware settings on power and energy

consumption. Specifically, we investigate how the use of Hyper-Threading on CPU and

the use of ECC and DVFS on GPU affect the performance, power and energy

consumption of CNNs.

A. Hyper-Threading

Hyper-Threading (HT) is a technology introduced by Intel in order to improve the

performance obtainable through parallelization. With HT enabled, the operating system

treats each physical processor as two logical cores. HT can improve the performance of

memory/IO intensive applications by hiding their latencies, but it often degrades the

154

Figure 61: Experimental results with different Hyper-Threading settings

performance of compute intensive workloads. To evaluate the impact of HT on deep

learning frameworks, we conducted experiments with HT enabled/disabled, in each case

configuring the number of threads to equal the number of logical cores. Because our

machine has sixteen physical cores, when HT is enabled we set the application to spawn

thirty-two threads.

Figure 61 shows the results reported on Caffe and its derivatives. CPU and DRAM

energies are stacked into one bar named HT-E-XXX or HT-D-XXX. In the former case,

HT is enabled; in the latter case, HT is disabled. The y-axis on the left side shows the

energy consumption per image. The lines represent the power curves of CPU and DRAM

and the power scale is on the y-axis on the right side. The values on the bars indicate the

total execution time of each setting. Although different libraries and implementations

experience different power consumptions, the power consumption is not significantly

affected by HT. However, HT affects the execution time and, consequently, the energy

155

consumption. As can be seen, while MKL reports a slight benefit from enabling HT (5%

speedup and 4.8% energy saving), OpenBLAS, OpenMP, CaffeConTroll all suffer

various degrees of performance degradation and consume more energy when HT is

enabled. In the worst case (Caffe with OpenBLAS), enabling HT leads to an increase in

execution time and energy consumption by 45% and 42%, respectively. This experiment

shows that performance and energy efficiency of neural network training are generally

negatively affected by HT, since this application saturates the hardware with computation

and does not experience benefits from memory latency hiding.

B. ECC

Nowadays Error Correction Code RAM is the standard configuration for high

performance computing clusters. With ECC enabled, RAM can detect and correct single

bit errors. This feature is also available on high-end GPUs, like the ones used in this

study.

Although enabling ECC can reduce errors, this feature does not come for free. When

ECC is enabled, some bits are reserved, thus reducing the available memory footprint and

bandwidth. In addition, enabling ECC causes applications to suffer from more expensive

synchronization and uncoalesced memory accesses [167].

We have tested the use of ECC on K20m using Caffe along with the cuDNN library.

Our experiments show no significant changes in performance and energy efficiency when

ECC is enabled. This is because CNN training does not require synchronization

operations and present relatively regular and coalesced memory access patterns. However,

we have observed that enabling ECC leads to a 6.2% increase in memory utilization.

Since deep CNN applications typically do not require bit-level accuracy and can tolerate

156

random errors, for these applications disabling ECC can be beneficial in that it allows a

better utilization of the limited memory capacity of the GPU. We note that modern GPUs

have from 1 to 12 GB of device memory, while CPUs are typically equipped with 16GB

up to 1 TB RAM.

C. DVFS

Dynamic Voltage and Frequency Scaling (DVFS) is an advanced power-saving

technology that aims to lower a component’s power state while still meeting the

performance requirement of the workload [168]. Both Titan X and K20m GPUs support

DVFS with various clock frequencies. On these devices, DVFS can control two clock

frequencies: memory frequency and core frequency. Nvidia provides the nvidia-smi

utility and the Nvidia Management Library (NVML) to control these frequencies.

Table 9 shows the clock frequencies

supported on K20m for GPU cores and

memory. When the memory frequency is

set to 324MHz, the only core frequency

is 324Hz. Titan X support wider range of

core and memory frequencies. Due to

space limits, in this paper we only report

results K20m.

Figure 62 shows the power, energy and performance results obtained when applying

different memory and core frequencies to CNN training. In the experiments, the batch

size is varied from 16 to 128. As expected, power consumption increases with the

operation frequency. In the experiments, the power consumption varies from 44w at

Table 9: Memory and core frequencies
supported on K20m GPU

Memory Frequency
(MHz)

GPU Core Frequency
(MHz)

2600

758
705
666
640
614

324 324

157

Figure 62: Power and energy consumption using different memory and core

frequencies

324/324 MHz frequencies to 118w at 758/2600 MHz frequencies. This wide range of

power consumption degrees shows that frequency scaling is an effective method that can

be leveraged to meet power cap requirements.

For energy-consumption, our experiments show a “valley” trend: the energy-

consumption is relatively high at both the lowest and highest frequencies, and is

relatively low at intermediate frequencies. This is because low frequency leads to low

power consumption at the cost of longer execution time, negatively affecting the total

energy consumption. Conversely, increasing frequency beyond a certain level increases

the power consumption while providing only a limited return on performance, also

leading to energy inefficiency. This “energy-valley” trend indicates that training deep

neural networks in an energy-aware fashion requires operating at frequencies that allow a

good trade-off between execution time and power consumption.

158

5.3 CNN on CPU-GPU heterogeneous architecture

5.3.1 Motivation

GPUs have achieved great success in accelerating various applications. Compared to

CPUs, GPUs are comprised of hundreds of cores that can provide more computation

power in throughput oriented computing. However, researchers from Intel have proven

that the performance gap between CPUs and GPUs is exaggerated, and the comparison

between an optimized GPU implementation and a single-threaded CPU baseline is often

unfair [43]. Currently, using GPUs for training of CNNs has become the de facto

approach. On Nvidia’s website, using Caffe with GPUs can achieve 11x~14x speedup

over CPU version for training CNNs. However, S. Hadjis et al. [44] point out that the

CPU baseline has not been optimized, and their proposed optimizations on CPUs can

narrow the performance gap to 1.86x, which is comparable to the performance on GPUs.

We observe the current research community’s obsession with how to build a larger

CNN to improve accuracies in different tasks and how to speedup the parameter learning

of CNNs. However, the race for speed is at the sacrifice of energy cost, which is a key

metric for any computing system. Hence, power consumption efficiency of CNNs has not

been addressed to the extent needed. In traditional competitions like ILSVRC,

classification accuracy is the only metric to decide final ranks. More recently, energy

efficiency has been taken into consideration and a new competition named “Low-Power

Image Recognition Challenge” (LPIRC) has been developed [45]. This competition is a

part of the IEEE Reboot Computing Initiatives and successfully held its 1st competition in

early 2015. As CNNs are increasingly used in real world applications, there is a growing

interest in energy related research of CNNs.

159

Although GPUs can deliver a significant amount of computation power, deploying

large-scale neural networks on GPUs is limited by the constrained size (1GB - 12GB) of

GPU global memory. This prevents exploiting large-scale neural networks to improve

classification accuracies for various computer vision and machine learning tasks. On the

other hand, CPU has fewer cores than GPU, and the larger memory attached to CPU

(several hundred of GB to TB level) makes it feasible to deploy large CNNs with billions

of parameters on a single node computer. Regardless of the fact that CPUs and GPUs

have complementary advantages and disadvantages regarding computation power and

memory space, current frameworks either use CPUs or GPUs and cooperative CPU-GPU

methods have not been fully explored. We believe that fully utilizing the heterogeneous

system (combining CPUs and GPUs) cannot only extend the ability to train large

networks, but also improve the overall system utilization, thereby increasing throughput

as well as energy efficiency.

Based on previous analysis, we propose two different CNN parallelization methods

on heterogeneous CPU-GPU platforms: Heterogeneous Net (HetNet) and Hybrid Net

(HybNet) [169]. For HetNet, the CNN model is mirrored on both CPUs and GPUs. In

each forward or backward propagation, the batched data are partitioned into a CPU batch

and a GPU batch and then fed to corresponding devices accordingly. For HybNet, a CNN

is partitioned into non-sharing CPU layers and GPU layers. In each forward or backward

propagation, the batched data need to move between CPU layers and GPU layers.

5.3.2 HetNet

160

Figure 63: An illustration of HetNet

Figure 63 is an illustration of HetNet. In this

approach, we keep two mirrored parts of the

same model: one on the CPU (CPUNet) and

one on the GPU (GPUNet). When the input

data are fetched from the hard drive, we

need two batches: one for CPU (CPU batch)

and the other for GPU (GPU batch). In this

way, we can perform training or

classification on CPUNet and GPUNet in

parallel with its own mini batch. Using

CNNs for classification only requires a forward pass without updating the parameters, so

the data will be fed into CPUNet or GPUNet without introducing any extra overhead.

However, for learning parameters of CNNs from training data, parameter updating is

needed after a full forward and backward propagation.

One problem we need to address is how to update the parameters when training a

neural network. Training CNNs requires a forward propagation and a backward

propagation to get the gradients. In HetNet, two mirrored networks are present thus two

different copies of gradients exist. One is from the CPUNet and the other is from

GPUNet. A straightforward but reasonable approach is to merge the two copies of

gradients using asynchronous data parallel training [156].

HetNet can fully utilize both CPUs and GPUs in the heterogeneous system and

thereby increase the total hardware utilization. The only possible overhead is merging

two copies of gradients. However, this operation can be easily and efficiently parallelized

161

Figure 64: An illustration of HybNet

efficiently by vectorization. With improved hardware utilization, we expect that the total

training time can be reduced. From an energy efficiency perspective, since static power

consumption has contributed to a large portion of the total energy cost, idle CPU can still

consume a significant amount of energy. So HetNet also improves the energy efficiency

by including CPUs for computation tasks.

5.3.3 HybNet

Figure 64 shows another approach (HybNet)

that we use to deploy CNN models on a CPU-

GPU heterogeneous system. This method is

motivated by the fact that FC layers have

more parameters than convolutional and

pooling layers but are less computationally

intensive (multiplication vs. convolution).

Also, FC layers are often placed in the last

few layers of a CNN, which make the

partition possible. We place all the FC layers

on CPUs while placing all convolutional and pooling layers on GPU. So in forward

propagation, the data go through convolutional layers and pooling layers on GPU first

and then the output of last pooling layer is copied to CPU. Then, the FC layers are ready

to perform the remaining forward path. For the backward propagation, the data are

processed through the FC layers on CPU. After being processed by the last fully

162

connected layer, the propagated gradients are copied from CPU to GPU. Then, the GPU

will complete the remaining backward propagation to get the gradients.

The proposed HybNet approach partitions the network into GPU layers (beginning

convolutional and pooling layers) and CPU layers (ending FC layers). So it moves parts

of the neural network to the CPU so that limited GPU global memory can hold a larger

model. However, this will incur data transfer between CPU and GPU for every mini

batch as well as fine-grained synchronizations. Also, even though FC layers perform

vector-vector multiplications, which can be efficiently implemented on CPUs using high

performance libraries (e.g., OpenBLAS [46] and MKL [47]), we still cannot ignore the

performance gap between CPU and GPU. Nonetheless, the benefit of fitting larger

networks into CPU-GPU heterogeneous system may lead to higher accuracy in machine

learning tasks.

5.3.4 Experimental Evaluation

A. Performance Evaluation of HetNet

To evaluate the performance of HetNet, we modified Caffe to support CPUNet and

GPUNet. We used the same test platforms and software configurations as in Chapter

5.2.2.B. Figure 65 shows the processing time of HetNet. We used three software settings:

GPU-only (labeled as “K20” and “Titan X”), HetNet-XX-MKL and HetNet-XX-OMP.

The suffix “-MKL” indicates implementations based on MKL and suffix “-OMP”

indicates the OpenMP implementation of optimized Caffe. The numbers on the bars

indicate the speedups when the CPU-MKL code serves as the baseline. We can see that

including CPUNet as part of processing engine in HetNet does improve the performance.

163

Figure 65: Performance of HetNet

However, the entity of this improvement depends on the performance gap between CPU

and GPU. For instance, the K20 GPU has lower single FLOPS than Titan X. As a

consequence, utilizing Titan X can achieve a speedup as high as 39x over CPU,

compared to a maximum 10x speedup on K20 over CPU. Another observation is that the

achieved speedup of HetNet over GPU-only version depends on the performance of the

CPUNet and the GPUNet. We can see that using the same CPUNet on the same CPU,

HetNet achieves 20% to 32% speedup on K20 but less than 9% on Titan X. Also, since

the OpenMP optimized Caffe can provide better performance than MKL enabled Caffe,

HetNet using OpenMP version of CPUNet narrows the performance gap between CPU

and GPU, thus achieving higher speedups of HetNet over GPU-only code.

B. Performance Evaluation of HybNet

164

Figure 66: Performance of HybNet with different neural networks

As we described in Chapter 5.3.3, HybNet partitions the network into GPU layers

(convolutional and pooling layers) and CPU layers (ending FC layers). This causes data

movements between CPU and GPU at the boundary between the layers mapped onto

these devices, thus introducing some overhead. In addition, the same layers are slower on

CPU than on GPU. Thus having CPU layers in HybNet incurs some performance

degradation. Figure 66 shows the performance of HybNet on K20 and Titan X on

different networks. The numbers following the network names are the batch sizes. We

can see that there is no significant difference between our HybNet and the GPU-only

version on GoogleNet. This is because GoogleNet has only a single small FC layer. The

other three networks (i.e. AlexNet, OverFeat and VGG) have three large FC layers each.

Offloading these FC layers to CPU, which is slower than GPU, leads to longer processing

time. From the figure, we can see that on K20, HybNet leads to a drop in processing

speed ranging from 7% to 14% over a GPU-only implementation. On Titan X, due to the

165

Figure 67: GPU memory footprint of HybNet with different neural networks

enlarged performance gap between CPU and Titan X (compared to K20), the

performance degradation is more obvious, ranging from 16% to 42%.

In terms of GPU memory usage, HybNet benefits from moving all FC layers from

GPU to CPU. Figure 67 shows the GPU memory footprint for all the test cases in Figure

66. Since GoogleNet has only a single small FC layer, in this case the GPU memory

footprint of HybNet is almost the same as that of the GPU-only version. For the other

three networks, on average HybNet reduces the GPU memory usage by 30% compared to

the GPU-only solution, although the exact numbers depend on the network and batch size.

The data residing on GPU store two pieces of information: learnable parameters of

the network and intermediate data flowing through the network. Once the network is

designed, the total number of learnable parameters is fixed. However, the size of the

intermediate data depends on the batch size: increasing the batch size will increase the

amount of intermediate data. Figure 68 and Figure 69 show the performance and GPU

memory consumption of HybNet on AlexNet using different batch sizes (from 16 to 128),

166

Figure 68: Performance of HybNet with AlexNet under different batch sizes

respectively. In Figure 68, the numbers on the HybNet bars are the ratios of HybNet’s

processing time over GPU-only processing. We can observe that increasing the batch size

amortizes the performance degradation. This is because, for large batches, the

convolutional layers and pooling layers consume much more processing time than the FC

layers. Therefore, as the batch size increases, the slowdown due to moving the FC layers

to CPU has a lesser effect on performance.

Figure 69 shows the GPU memory footprint of HybNet. As can be seen, with the

increase of batch size, the total GPU memory footprint increases but the total amount of

reduced memory seems to remain the same. This can be explained that the FC layers

moved to the CPU have a lot of learnable parameters but a few data, thus increasing data

batch size has limited impact on increasing the memory footprint of the FC layers. This

indicates that our HybNet can efficiently reduce the memory footprint when the batch

size is small.

167

Figure 69: GPU memory footprint of HybNet with AlexNet under different batch sizes

5.4 Virtual Memory for CNN on GPU

5.4.1 Motivation

In 2012 AlexNet was the first CNN-based model to win the ImageNet Large Scale Visual

Recognition Competition (ILSVRC), reducing the error rate dramatically from 26% to

16%. In subsequent years, other CNN-based models dominated ILSVRC, and each year

researchers have proposed new models with more layers and convolutional kernels,

leading to deeper network architectures, and pushing the state-of-the-art of image

recognition to human levels. By including more learnable parameters, larger neural

networks have the potential for achieving higher accuracy. However, larger and deeper

neural networks require more powerful processors to be trained in reasonable time. GPUs

can provide more than 10x speedups over CPUs and have become the de-factor platform

for training neural networks. However, GPUs have limited device memory (4 GB to 12

GB). We have observed that current CNN frameworks for GPU, like Caffe, allocate all

168

memory required by a CNN on the GPU at the beginning of computation and free it only

at the end. Large-scale neural networks often have large memory footprints exceeding the

GPU memory, making it infeasible for a GPU to accommodate and train these models.

On the other hand, virtual memory has become a standard component in operating

systems for GPUs and existing work [170] has explored extending the concept of virtual

memory to GPUs. This motivates us to design and implement Virtual Deep Neural

Network (vDNN), a memory manager with virtual memory support for CNNs on GPU.

We have prototyped vDNN on top of Caffe. Our experiments show that vDNN allows

training large-scale neural networks (e.g. 30 GB memory footprint) on K20 (4.5 GB

device memory) and Titan X (12 GB device memory) at the cost of some runtime

overhead.

5.4.2 Design

The main component of vDNN is a memory manager that supports virtual memory. The

basic idea to keep a persistent copy of all the data of a CNN on the host (CPU) memory,

and to move the data required in each step of the GPU computation from host to device

on demand. Once the device copy is allocated, it will reside on GPU unless it is swapped

out to the persistent copy in the host memory due to a shortage of device memory. This

swap operation can happen when a data copy is requested from the device but serving

this request would cause the device capacity to be exceeded.

The memory manager includes the following components: (1) mapping table, (2)

swap area, (3) swap candidate pool and (4) working set.

169

Mapping table: This table stores the mapping between device copies and host copies

of the data. It is similar to an OS page table, which stores the address translation between

physical and virtual memory. The main difference is that in vDNN the data are organized

in chunks with different sizes (instead of fixed “page sizes”).

Swap area: The swap area resides in the host memory and stores the persistent copies

of the data.

Swap candidate pool: When the requested device memory allocation exceeds the

device capacity, one or multiple swaps will happen. The swap candidate pool maintains a

record of the data copies residing on GPU that can potentially be moved to the swap area

in the host memory so as to free GPU memory.

Working set: The working set maintains a record of data copies that are actively in

use on the GPU. Unlike the swap candidate pool, the data copies in the working set

should not be swapped out because they are currently used.

5.4.3 Experimental Evaluation

To evaluate the performance of our virtual memory system, we conduct two experiments.

The first one is a meant to evaluate the overhead of vDNN’s virtual memory system. In

this experiment, we use small CNN models that fit the device memory, but limit the

amount of GPU memory used by vDNN so as to force some swap operations. We then

compare the performance of vDNN with that of the unmodified Caffe. We recall that

Caffe allocates and de-allocates all the CNN data on GPU at the beginning and at the end

of the computation, respectively. In the second experiment, we let the memory manager

170

Figure 70: Performance of vDNN with 1G GPU memory

use all the GPU memory and train some very large networks that would require more

device memory than available on current GPUs.

In Figure 70 we show performance data collected when configuring vDNN to use 1

GB physical GPU memory. We trained four models with different batch sizes. On the x-

axis, each test is named in the format of “network name” - “batch size” - “required

memory size”. Since vDNN is configured to use 1GB device memory and the memory

footprint of the considered neural networks ranges from 1.3 GB to 4.2 GB, swap

operations will happen in all cases. The numbers on the bars indicate the speedup of each

implementation over Caffe-MKL. For each neural network, we test Caffe on GPU with

and without vDNN. As can be seen, vDNN experiences performance degradation due to

the swap overhead. For the smallest neural network, AlexNet-128-1.3G, vDNN achieves

roughly half of the performance of original Caffe on GPU. This performance slowdown

increases with the size of the CNN model. For instance, on K20 “AlexNet-128-1.3G”,

vDNN achieves 50% performance of original Caffe but this number drops to 40% on

171

Figure 71: Performance of vDNN with full GPU global memory

“AlexNet-256-2G”, 27.5% on “VGG-32-3.4G” and 20% on “GoogleNet-64-4.2G”. This

is because larger models lead to more swap operations and data movements, hurting

performance.

Figure 71 shows results of the second experiment, in which vDNN manages the full

available GPU memory and large models, which cannot fit into GPU memory, are trained.

In this experiment, we train GoogleNet using different batch sizes. The naming

convention on the x-axis is the same as in Figure 70 and “GN” stands for “GoogleNet”.

The y-axis shows the processing time in exponential scale. Recall that K20 and Titan X

have 4.5 GB and 12 GB device memory, respectively. Hence, on “GN-64-4G” no swap is

necessary and the vDNN achieves almost the same performance as the original Caffe on

GPU (overhead less than 2%). With the increase in batch size, the total memory required

by the model also increases. As a result, swap operations become more frequent and the

speedup of vDNN over CPU-MKL becomes smaller. From the Figure 71, we can see that

172

vDNN can facilitate training 24 GB model on K20 with 4.5 GB GPU memory and 31 GB

model on Titan X with 12 GB memory. These models are larger than any available GPU

in the market. vDNN makes training these very large neural networks possible on

existing GPU hardware.

173

Chapter 6 Conclusion

In this dissertation, we have studied the acceleration and deployment of three important

categories of emerging applications on many-core processors. The considered

applications range from bioinformatics, to graph processing and other applications with

irregular computation and memory access patterns, to deep neural networks, which

represent some of the most challenging and computational intensive problems faced in

our research community. We have addressed several research questions related to the

design of software systems for many-core platforms. Our contributions include:

1) We have explored different implementations of the Needleman-Wunsch (NW)

algorithm on GPU. The methods considered differ in their computational patterns,

their use of the available hardware parallelism, and their handling of the data

dependencies intrinsic in NW. Our analysis gives insights into the architectural

benefits and costs of using GPUs for bioinformatics, and our proposed techniques

are also applicable to other domains (e.g. computer vision algorithms).

2) We have designed source-to-source transformation techniques to automatically

generate parallel code for different many-core platforms (GPUs and the Intel

Xeon Phi) starting from a platform-agnostic graph programming API. We have

proposed a programming framework including programming and runtime support

for dynamic memory allocation, and we have studied the effect of synchronization

on the performance of our runtime library.

3) We have explored an implementation space for graph algorithms on GPU. Our

analysis shows that there is no optimal solution across graph problems and

174

datasets. We have proposed an adaptive runtime that dynamically selects the most

suitable implementation among the ones resulting from the aforementioned

exploration space and we have designed data structures that lead to minimal

overhead when switching between implementations at runtime. Further, we have

devised heuristics that guide the decisions of our adaptive runtime.

4) We have proposed and studied several parallelization templates to allow the

effective deployment of irregular applications with uneven work distribution on

GPU. We have observed that a new GPU hardware feature - named dynamic

parallelism (DP) – can help embedding work balancing mechanisms in

applications, but its naïve use can suffer from significant overhead. To avoid this

overhead, we have proposed a software-based workload consolidation mechanism

for kernels relying on DP, and we have integrated these schemes in a directive-

based compiler. By automating our code transformations, we allow programmers

to write simple code focusing on functionality rather than on performance. We

have observed that static methods to configure the degree of multithreading of

GPU kernels are ineffective in the presence of DP and we have proposed a

systematic way to configure dynamic kernel launches

5) We have conducted a comprehensive study on the power behavior and energy

efficiency of numerous well-known CNNs and training frameworks on CPUs and

GPUs, and we have provided a detailed workload characterization to facilitate the

design of energy efficient deep learning solutions. We have extended existing

CPU-only or GPU-only CNNs learning methods to CPU-GPU cooperative

175

operation. Further, we have proposed and implemented vDNN on top of Caffe to

facilitate training large CNN models with limited GPU memory.

Our work leaves some open research directions. These include:

1) We have explored the acceleration of a specific bioinformatics application. In fact,

many algorithms from bioinformatics and other application areas share similar

computational patterns. Therefore, it would be interesting to generalize our study

and propose more generic frameworks allowing the effective deployment of

classes of applications with similar patterns.

2) For irregular applications, we have limited our study to the single node/single

GPU setting. However, with the ever-increasing dataset sizes in modern

applications, parallelization on distributed systems becomes paramount. This will

introduce more challenges related to graph partitioning, communication across

partitions, and algorithm refactoring.

3) Embedded systems including CPUs, GPUs and FPGAs are widely used in various

areas such as consumer electronic products, drones, autonomous driving. It would

be interesting to extend the workload characterization that we have proposed for

training deep neural networks to these platforms.

176

References

[1] L. Song, M. Feng, N. Ravi, Y. Yang, and S. Chakradhar., “COMP: Compiler
Optimizations for Manycore Processors,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, 2014, pp. 659-671.

[2] S. Henikoff, and J. G. Henikoff, “Amino-acid substitution matrices from protein
blocks,” Proceedings of the National Academy of Sciences, U.S.A., vol. 89, no.
#22, pp. 10915-10919, 1992.

[3] D. S. Hirschberg, “A linear space algorithm for computing maximal common
subsequences,” Commun. ACM, vol. 18, no. 6, pp. 341-343, 1975.

[4] S. B. Needleman, and C. D. Wunsch, “A general method applicable to the search
for similarities in the amino acid sequence of two proteins,” Journal of Molecular
Biology, vol. 48, pp. 443-453, 1970.

[5] J. R. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam-
Syed-Mohideen, D. M. McGarrell, T. Marsh, G. M. Garrity, and J. M. Tiedje,
“The Ribosomal Database Project: improved alignments and new tools for rRNA
analysis,” Nucleic Acids Research, vol. 37, no. Database issue, pp. D141-5, Jan,
2009.

[6] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and
organization in the brain,” Psychological review, vol. 386, 1958.

[7] TheanoTeam. "Convolutional Neural Networks (LeNet),"
http://deeplearning.net/tutorial/lenet.html.

[8] T. F. Smith, and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. #1, pp. 195-197, Mar
25, 1981.

[9] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: Improving the
sensitivity of progressive multiple sequence alignment through sequence
weighting, positions-specific gap penalties and weight matrix choice.,” Nucleic
Acids Research, vol. 22, pp. 4673-4680, 1994.

[10] D. M. Hillis, C. Moritz, and B. K. Mable, Molecular Systematics: Second Edition,
Sunderland, MA: Sinauer Associates, 1996.

[11] M. Nei, and T. Gojobori, “Simple methods for estimating the numbers of
synonymous and nonsynonymous nucleotide substitutions,” Molecular Biology
and Evolution, vol. 3, no. 5, pp. 418-426, 1986.

[12] D. A. Benson, M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J.
Ostell, and E. W. Sayers, “GenBank,” Nucleic Acids Research, vol. 41, no.
Database issue, pp. D36-42, Jan, 2013.

177

[13] W. R. Pearson, and D. J. Lipman, “Improved tools for biological sequence
comparison,” Proc Natl Acad Sci U S A, vol. 85, no. 8, pp. 2444-8, Apr, 1988.

[14] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic Local
Alignment Search Tool,” Journal of Molecular Biology, vol. 215, no. #3, pp. 403-
410, 1990.

[15] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. H. Zhang, Z. Zhang, W. Miller,
and D. J. Lipman, “Gapped Blast and Psi-Blast : A new-generation of protein
database search programs,” Nucleic Acids Research, vol. 25, no. #17, pp. 3389-
3402, 1997.

[16] H. Li, J. Ruan, and R. Durbin, “Mapping short DNA sequencing reads and calling
variants using mapping quality scores,” Genome Research, vol. 18, no. 11, pp.
1851-8, Nov, 2008.

[17] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome,” Genome
Biology, vol. 10, no. 3, pp. R25, 2009.

[18] K. Meusemann, B. M. von Reumont, S. Simon, F. Roeding, S. Strauss, P. Kuck, I.
Ebersberger, M. Walzl, G. Pass, S. Breuers, V. Achter, A. von Haeseler, T.
Burmester, H. Hadrys, J. W. Wagele, and B. Misof, “A phylogenomic approach to
resolve the arthropod tree of life,” Molecular Biology and Evolution, vol. 27, no.
11, pp. 2451-64, Nov, 2010.

[19] N. R. Pace, “Mapping the tree of life: progress and prospects,” Microbiol Mol
Biol Rev, vol. 73, no. 4, pp. 565-76, Dec, 2009.

[20] L. W. Parfrey, J. Grant, Y. I. Tekle, E. Lasek-Nesselquist, H. G. Morrison, M. L.
Sogin, D. J. Patterson, and L. A. Katz, “Broadly sampled multigene analyses yield
a well-resolved eukaryotic tree of life,” Syst Biol, vol. 59, no. 5, pp. 518-33, Oct,
2010.

[21] O. Beja, M. T. Suzuki, J. F. Heidelberg, W. C. Nelson, C. M. Preston, T. Hamada,
J. A. Eisen, C. M. Fraser, and E. F. DeLong, “Unsuspected diversity among
marine aerobic anoxygenic phototrophs,” Nature, vol. 415, no. 6872, pp. 630-3,
Feb 7, 2002.

[22] M. Kim, M. Morrison, and Z. Yu, “Status of the phylogenetic diversity census of
ruminal microbiomes,” FEMS Microbiol Ecol, vol. 76, no. 1, pp. 49-63, Apr,
2011.

[23] S. G. Tringe, and E. M. Rubin, “Metagenomics: DNA sequencing of
environmental samples,” Nature Reviews Genetics, vol. 6, no. 11, pp. 805-814,
Nov, 2005.

178

[24] J. C. Venter, K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen,
D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M.
W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-
Tillson, C. Pfannkoch, Y. H. Rogers, and H. O. Smith, “Environmental genome
shotgun sequencing of the Sargasso Sea,” Science, vol. 304, no. 5667, pp. 66-74,
Apr 2, 2004.

[25] M. F. Whitford, R. J. Forster, C. E. Beard, J. Gong, and R. M. Teather,
“Phylogenetic analysis of rumen bacteria by comparative sequence analysis of
cloned 16S rRNA genes,” Anaerobe, vol. 4, no. 3, pp. 153-63, Jun, 1998.

[26] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism to
program GPUs for general-purpose uses,” SIGARCH Comput. Archit. News, vol.
34, no. 5, pp. 325-335, 2006.

[27] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in Proc. of IISWC,
2009, pp. 44-54.

[28] "Nvidia Applications Catalog," http://www.nvidia.com/docs/IO/123576/nv-
applications-catalog-lowres.pdf.

[29] P. D. Vouzis, and N. V. Sahinidis, “GPU-BLAST: using graphics processors to
accelerate protein sequence alignment,” Bioinformatics, vol. 27, no. 2, pp. 182-8,
Jan 15, 2010.

[30] M. C. Schatz, C. Trapnell, A. L. Delcher, and A. Varshney, “High-throughput
sequence alignment using Graphics Processing Units,” BMC Bioinformatics, 2007.

[31] J. P. Walters, X. Meng, V. Chaudhary, T. Oliver, L. Y. Yeow, B. Schmidt, D.
Nathan, and J. Landman, “MPI-HMMER-Boost: Distributed FPGA Acceleration,”
The Journal of VLSI Signla Processing Systems for Signal, Image, and Video
Technology, vol. 48, no. 3, pp. 6, 2007.

[32] B. Zhang, T. K. Saha, and M. A. Hasan, “Name disambiguation from link data in
a collaboration graph,” in Advances in Social Networks Analysis and Mining
(ASONAM), 2014 IEEE/ACM International Conference on, 2014, pp. 81-84.

[33] B. Pang, N. Zhao, M. Becchi, D. Korkin, and C. R. Shyu, “Accelerating large-
scale protein structure alignments with graphics processing units,” BMC Res
Notes, vol. 5, pp. 116, 2012.

[34] W. Liu, B. Schmidt, and W. Muller-Wittig, “CUDA-BLASTP: Accelerating
BLASTP on CUDA-Enabled Graphics Hardware,” IEEE Transactions on
Computational Biology and Bioinformatics, vol. 8, no. 6, pp. 1678-1684, 2011.

[35] Y. Liu, B. Schmidt, and D. L. Maskell, “MSA-CUDA: Multiple Sequence
Alignment on Graphics Processing Units with CUDA,” 2009, pp. 121-128.

179

[36] Y. Liu, B. Schmidt, and D. L. Maskell, “DecGPU: distributed error correction on
massively parallel graphics processing units using CUDA and MPI,” BMC
Bioinformatics, 2011.

[37] Y. Liu, B. Schmidt, and D. L. Maskell, “CUSHAW: a CUDA compatible short
read aligner to large genomes based on the Burrows-Wheeler transform,”
Bioinformatics, vol. 28, no. 14, pp. 1830-1837, 2011.

[38] Z. Zheng, T.-D. Nguyen, and B. Schmidt, "CRiSPy-CUDA: Computing Species
Richness in 16S rRNA Pyrosequencing Datasets with CUDA," Pattern
Rcognition in Bioinformatics, pp. 37-49, 2011.

[39] S. A. Manavski, and G. Valle, “CUDA compatible GPU cards as efficient
hardware accelerators for Smith-Waterman sequence alignment,” BMC
Bioinformatics, vol. 9 Suppl 2, pp. S10, 2008.

[40] W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig, “Streaming algorithms for
biological sequence alignment on GPUs,” IEEE Transactions on Parallel and
Distributed Systems, vol. 19, pp. 1270-1281, 2007.

[41] Y. Gao, and J. D. Bakos, “GPU Acceleration of Pyrosequencing Noise Removal,”
in Proc. of SAAHPC, Argonne, IL USA, 2012, pp. 94-101.

[42] Y. Liu, D. L. Maskell, and B. Schmidt, “CUDASW++: Optimizing Smith-
Waterman Sequence Database Searches for CUDA-enabled Graphics Processing
Units,” BMC Research Notes, vol. 2, no. 73, 2009.

[43] A. Wirawan, C. K. Kwoh, N. T. Hieu, and B. Schmidt, “CBESW: Sequence
Alignment on the Playstation 3,” BMC Bioinformatics, vol. 9, 2008.

[44] A. Szalkowski, C. Ledergerber, P. Krahenbuhl, and C. Dessimoz, “SWPS3 - fast
multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and x86/SSE2,”
BMC Res Notes, vol. 1, 2008.

[45] J. Li, S. Ranka, and S. Sahni, “Pairwise sequence alignment for very long
sequences on GPUs,” in Proc. of ICCABS, 2012, pp. 1-6.

[46] K.-B. Li, “ClustalW-MPI: ClustalW analysis using distributed and parallel
computing,” Bioinformatics, vol. 19, no. 12, pp. 2, 2003.

[47] A. Biegert, C. Mayer, M. Remmert, J. Soding, and A. N. Lupas, “The MPI
Bioinformatics Toolkit for protein sequence analysis,” Nucleic Acids Research,
vol. 34, pp. 5, 2006.

[48] D. Li, and M. Becchi, “Multiple Pairwise Sequence Alignments with the
Needleman-Wunsch Algorithm on GPU,” in High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion, 2012, pp. 1471-
1472.

180

[49] D. Li, K. Sajjapongse, H. Truong, G. Conant, and M. Becchi, “A Distributed
CPU-GPU Framework for Pairwise Alignments on Large-Scale Sequence
Datasets,” in Proceedings of the 24th IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP), Ashburn,
VA, 2013.

[50] H. Truong, D. Li, K. Sajjapongse, G. Conant, and M. Becchi, “Large-scale
pairwise alignments on GPU clusters: exploring the implementation space,”
Journal of Signal Processing Systems, vol. 77, pp. 131-149, 2014.

[51] J. Sanders, and E. Jabdrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming: Addison-Wesley Professional, 2010.

[52] D. A. Bader, and G. Cong, “Fast shared-memory algorithms for computing the
minimum spanning forest of sparse graphs,” J. Parallel Distrib. Comput., vol. 66,
no. 11, pp. 1366-1378, 2006.

[53] C. E. Leiserson, and T. B. Schardl, “A work-efficient parallel breadth-first search
algorithm (or how to cope with the nondeterminism of reducers),” in Proceedings
of the 22nd ACM symposium on Parallelism in algorithms and architectures,
Thira, Santorini, Greece, 2010, pp. 303-314.

[54] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable Graph Exploration
on Multicore Processors,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis,
2010, pp. 1-11.

[55] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders, “A Parallelization of
Dijkstra's Shortest Path Algorithm,” in Proceedings of the 23rd International
Symposium on Mathematical Foundations of Computer Science, 1998, pp. 722-
731.

[56] G. Vaira, and O. Kurasova, “Parallel Bidirectional Dijkstra's Shortest Path
Algorithm,” in Proceedings of the 2011 conference on Databases and Information
Systems VI: Selected Papers from the Ninth International Baltic Conference,
DB&IS 2010, 2011, pp. 422-435.

[57] D. B. Johnson, and P. Metaxas, “A parallel algorithm for computing minimum
spanning trees,” in Proceedings of the fourth annual ACM symposium on Parallel
algorithms and architectures, San Diego, California, USA, 1992, pp. 363-372.

[58] F. Dehne, S. G, #246, and tz, “Practical Parallel Algorithms for Minimum
Spanning Trees,” in Proceedings of the The 17th IEEE Symposium on Reliable
Distributed Systems, 1998, pp. 366.

[59] V. Koubek, and J. Kršňáková, "Parallel algorithms for connected components in a
graph," Fundamentals of Computation Theory, pp. 208-217: Springer Berlin
Heidelberg, 1985.

181

[60] I. William Mclendon, B. Hendrickson, S. Plimpton, and L. Rauchwerger,
“Finding strongly connected components in parallel in particle transport sweeps,”
in Proceedings of the thirteenth annual ACM symposium on Parallel algorithms
and architectures, Crete Island, Greece, 2001, pp. 328-329.

[61] W. Schudy, “Finding strongly connected components in parallel using O(log2n)
reachability queries,” in Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures, Munich, Germany, 2008, pp. 146-151.

[62] T. K. Saha, B. Zhang, and M. A. Hasan, “Name Disambiguation from link data in
a collaboration graph using temporal and topological features,” in Journal of
Social Network Analysis and Mining (SNAM 2015), 2015.

[63] P.-Y. Chen, B. Zhang, M. A. Hasan, and A. Hero, “Incremental Method for
Spectral Clustering of Increasing Orders,” in KDD Workshop on Mining and
Learning with Graphs (MLG 2016), 2016.

[64] D. Gregor, and A. Lumsdaine, “Lifting sequential graph algorithms for
distributed-memory parallel computation,” in Proceedings of the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, San Diego, CA, USA, 2005, pp. 423-437.

[65] F. Hielscher, and P. Gottschling. "ParGraph," http://pargraph.sourceforge.net.

[66] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato,
and L. Rauchwerger, “STAPL: an adaptive, generic parallel C++ library,” in
Proceedings of the 14th international conference on Languages and compilers for
parallel computing, Cumberland Falls, KY, USA, 2003, pp. 193-208.

[67] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,
“Distributed GraphLab: a framework for machine learning and data mining in the
cloud,” Proceedings of the VLDB Endowment, vol. 5, no. 8, pp. 716-727, 2012.

[68] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: large-scale graph
computation on just a PC,” in Processings of the 10th USENIX conference on
Operating Systems Design and Implementation, Berkeley, CA, USA, 2012, pp.
31-46.

[69] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-Marl: a DSL for easy and
efficient graph analysis,” in Proceedings of the 17th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), London, England, UK, 2012, pp. 349-362.

[70] M. Dundar, Q. Kou, B. Zhang, Y. He, and B. Rajwa, “Simplicity of Kmeans
versus Deepness of Deep Learning: A Case of Unsupervised Feature Learning
with Limited Data,” in IEEE International Conference on Machine Learning
Applications, 2015.

182

[71] S. Choudhury, K. Agarwal, S. Purohit, B. Zhang, M. Pirrung, W. Smith, and M.
Thomas, NOUS: Construction and Querying of Dynamic Knowledge Graphs,
arXiv preprint, 2016.

[72] B. Zhang, S. Choudhury, M. A. Hasan, X. Ning, K. Agarwal, S. Purohit, and P. P.
Cabrera, “Trust from the past: Bayesian Personalized Ranking based Link
Prediction in Knowledge Graphs,” in SDM Workshop on Mining Networks and
Graphs (MNG 2016), 2016.

[73] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew,
“Optimistic parallelism requires abstractions,” in Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and implementation, San
Diego, California, USA, 2007, pp. 211-222.

[74] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem,
T.-H. Lee, A. Lenharth, R. Manevich, M. Mendez-Lojo, D. Prountzos, and X. Sui,
“The tao of parallelism in algorithms,” in Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and implementation, San
Jose, California, USA, 2011, pp. 12-25.

[75] P. Harish, and P. J. Narayanan, “Accelerating large graph algorithms on the GPU
using CUDA,” in Proceedings of the 14th international conference on High
performance computing, Goa, India, 2007, pp. 197-208.

[76] L. Luo, M. Wong, and W.-m. Hwu, “An effective GPU implementation of
breadth-first search,” in Proceedings of the 47th Design Automation Conference,
2010, pp. 52-55.

[77] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph traversal,” in
Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice
of Parallel Programming, New Orleans, Louisiana, USA, 2012, pp. 117-128.

[78] M. Mendez-Lojo, M. Burtscher, and K. Pingali, “A GPU implementation of
inclusion-based points-to analysis,” in Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, New Orleans,
Louisiana, USA, 2012, pp. 107-116.

[79] J. Barnat, P. Bauch, L. Brim, and M. Ceska, “Computing Strongly Connected
Components in Parallel on CUDA,” in Proceedings of the IEEE International
Parallel & Distributed Processing Symposium (IPDPS), 2011, pp. 544-555.

[80] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA graph
algorithms at maximum warp,” in Proceedings of the 16th ACM symposium on
Principles and practice of parallel programming, San Antonio, TX, USA, 2011, pp.
267-276.

183

[81] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient Parallel Graph Exploration on
Multi-Core CPU and GPU,” in Proceedings of the 2011 International Conference
on Parallel Architectures and Compilation Techniques, 2011, pp. 78-88.

[82] B. Zhang, V. Dave, and M. A. Hasan, Feature Selection for Classification under
Anonymity Constraint, arXiv preprint, 2015.

[83] T. Garfinkel, and M. Rosenblum, “When virtual is harder than real: security
challenges in virtual machine based computing environments,” in Proceedings of
the 10th conference on Hot Topics in Operating Systems - Volume 10, Santa Fe,
NM, 2005, pp. 20-20.

[84] M. Price, “The Paradox of Security in Virtual Environments,” Computer, vol. 41,
no. 11, pp. 22-28, 2008.

[85] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: a dynamic
optimization framework for bulk-synchronous applications in heterogeneous
systems,” in Proceedings of the 19th international conference on Parallel
architectures and compilation techniques, Vienna, Austria, 2010, pp. 353-364.

[86] A. Gharaibeh, L. B. Costa, E. Santos-Neto, and M. Ripeanu, “On Graphs, GPUs,
and Blind Dating: A Workload to Processor Matchmaking Quest,” in Proceedings
of the 2013 IEEE International Symposium on Parallel & Distributed Processing,
2013.

[87] J. Zhong, and B. He, “Medusa: Simplified Graph Processing on GPUs,” IEEE
Trans on Parallel and Distributed Systems, 2013.

[88] J. DiMarco, and M. Taufer, “Performance Impact of Dynamic Parallelism on
Different Clustering Algorithms and the New GPU Architecture,” in Proceedings
of the DSS11 SPIE Defense, Security, and Sensing Symposium - Modeling and
Simulation for Defense Systems and Applications VI, Baltimore, MD, 2013.

[89] A. Adinetz. "Adaptive Parallel Computation with CUDA Dynamic Parallelism,"
http://devblogs.nvidia.com/parallelforall/introduction-cuda-dynamic-parallelism/.

[90] A. Adinetz. "A CUDA Dynamic Parallelism Case Study: PANDA,"
http://devblogs.nvidia.com/parallelforall/a-cuda-dynamic-parallelism-case-study-
panda/.

[91] Y. Yang, and H. Zhou, “CUDA-NP: realizing nested thread-level parallelism in
GPGPU applications,” in Proceedings of the 19th ACM SIGPLAN symposium on
Principles and practice of parallel programming, Orlando, Florida, USA, 2014, pp.
93-106.

[92] D. Li, H. Wu, and M. Becchi, “Nested Parallelism on GPU: Exploring
Parallelization Templates for Irregular Loops and Recursive Computations,” in

184

Proceedings of the 44th International Conference on Parallel Processing Beijing,
China, 2015.

[93] J. Wang, and S. Yalamanchili, “Characterization and Analysis of Dynamic
Parallelism in Unstructured GPU Applications,” in Proceedings of the 2014 IEEE
International Symposium on Workload Characterization, Raleigh, NC, 2014.

[94] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Dynamic Thread Block
Launch: a Lightweight Execution Mechanism to Support Irregular Applications
on GPUs,” in Proceedings of the 42nd Annual International Symposium on
Computer Architecture, 2015.

[95] D. Li, S. Chakradhar, and M. Becchi, "GRapid: a Compilation and Runtime
Framework for Rapid Prototyping of Graph Applications on Many-core
Processors."

[96] S. Chakradhar, M. Becchi, and D. Li, Source-to-source transformations for graph
processing on many-core platforms US,to NEC Corporation, USPTO, 2016.

[97] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on GPUs,” in Proceedings of the IEEE International Symposium on
Workload Characterization, La Jolla, CA, 2012, pp. 141-151.

[98] R. Nasre, M. Burtscher, and K. Pingali, “Data-driven versus Topology-driven
Irregular Computations on GPUs,” in Proceedings of the 2013 IEEE International
Symposium on Parallel & Distributed Processing, 2013.

[99] R. Nasre, M. Burtscher, and K. Pingali, “Atomic-free irregular computations on
GPUs,” in Proceedings of the 6th Workshop on General Purpose Processor Using
Graphics Processing Units, Houston, Texas, 2013, pp. 96-107.

[100] R. Nasre, M. Burtscher, and K. Pingali, “Morph algorithms on GPUs,” in
Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice
of parallel programming, Shenzhen, China, 2013, pp. 147-156.

[101] L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM, vol.
33, no. 8, pp. 103-111, 1990.

[102] D. Li, and M. Becchi, “Deploying Graph Algorithms on GPUs: an Adaptive
Solution,” in Proceedings of the 2013 IEEE International Symposium on Parallel
& Distributed Processing, 2013.

[103] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation, 3rd ed.: Addison Wesley, 2006.

[104] M. Becchi, and P. Crowley, “A-DFA: a Low-complexity Compression Algorithm
for Efficiant Regular Expression Evaluation,” ACM Trans. Archit. Code Optim.,
vol. 10, no. 1, 2013.

185

[105] A. Ramamurthy, “Towards scalar synchronization in SIMT architectures,” M.S.
Thesis, Electrical and Computer Engineering, The University of British Columbia,
2011.

[106] S. Lee, and R. Eigenmann, “OpenMPC: Extended OpenMP Programming and
Tuning for GPUs,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis,
2010, pp. 1-11.

[107] N. Wilt, The cuda handbook: A comprehensive guide to gpu programming:
Addison-Wesley Professional, 2013.

[108] A. Kerr, G. Diamos, and S. Yalamanchili, “A characterization and analysis of
PTX kernels,” in Proceedings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC), 2009, pp. 3-12.

[109] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table lookup
using extended bloom filter: an aid to network processing,” in Proceedings of the
2005 conference on Applications, technologies, architectures, and protocols for
computer communications, Philadelphia, Pennsylvania, USA, 2005, pp. 181-192.

[110] Z. Li, G. Xia, H. Gao, Y. Tang, Y. Chen, B. Liu, J. Jiang, and Y. Lv, “NetShield:
massive semantics-based vulnerability signature matching for high-speed
networks,” in Proceedings of the ACM SIGCOMM 2010 conference, New Delhi,
India, 2010, pp. 279-290.

[111] G. Varghese, J. A. Fingerhut, and F. Bonomi, “Detecting evasion attacks at high
speeds without reassembly,” in Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols for computer
communications, Pisa, Italy, 2006, pp. 327-338.

[112] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel Programming
with CUDA,” Queue, vol. 6, no. 2, pp. 40-53, 2008.

[113] M. A. Hassaan, M. Burtscher, and K. Pingali, “Ordered vs. unordered: a
comparison of parallelism and work-efficiency in irregular algorithms,” in
Proceedings of the 16th ACM symposium on Principles and practice of parallel
programming, San Antonio, TX, USA, 2011, pp. 3-12.

[114] T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms:
MIT press, 2001.

[115] J. Balfour. "CUDA Threads and Atomics."

[116] D. Li, and M. Becchi, “Designing Code Variants for Applications with Nested
Parallelism on GPUs,” in GPU Technology Conference, 2015.

186

[117] N. T. Duong, Q. A. P. Nguyen, A. T. Nguyen, and H.-D. Nguyen, “Parallel
PageRank computation using GPUs,” in Proceedings of the Third Symposium on
Information and Communication Technology, 2012.

[118] J. L. Greathouse, and M. Daga, "Efficient sparse matrix-vector multiplication on
GPUs using the CSR storage format." pp. 769-780.

[119] "DIMACS Implementation Challenges," http://dimacs.rutgers.edu/Challenges/.

[120] "Stanford Large Network Dataset Collection," http://snap.stanford.edu/data.

[121] D. Li, H. Wu, and M. Becchi, “Exploiting Dynamic Parallelism to Efficiently
Support Irregular Nested Loops on GPUs,” in International Workshop on Code
Optimisation for Multi and Many Cores, 2015, pp. 5.

[122] H. Wu, D. Li, and M. Becchi, “Compiler-assisted Workload Consolidation for
Efficient Dynamic Parallelism on GPU,” in IEEE 30th International Symposium
on Parallel & Distributed Processing (IPDPS), 2016.

[123] J. Liu, Y. Chen, and Y. Zhuang, “Hierarchical I/O Scheduling for Collective I/O,”
in Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on, 2013, pp. 211-218.

[124] J. Liu, Y. Lu, and Y. Chen, “In-advance data analytics for reducing time to
discovery,” in Big Data (Big Data), 2014 IEEE International Conference on, 2014,
pp. 329-334.

[125] J. Liu, Y. Che, and S. Byna, “Collective Computing for Scientific Big Data
Analysis,” in The Eighth International Workshop on Parallel Programming
Models and Systems Software for High-End Computing (P2S2), 2015.

[126] S. Jones. "Introduction to Dynamic Parallelism," http://on-
demand.gputechconf.com/gtc/2012/presentations/S0338-GTC2012-CUDA-
Programming-Model.pdf.

[127] M. Goldfarb, Y. Jo, and M. Kulkarni, “General transformations for GPU
execution of tree traversals,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, Denver,
Colorado, 2013, pp. 1-12.

[128] G. E. Blelloch, and G. W. Sabot, “Compiling collection-oriented languages onto
massively parallel computers,” J. Parallel Distrib. Comput., vol. 8, no. 2, pp. 119-
134, 1990.

[129] G. E. Blelloch, NESL: A Nested Data-Parallel Language, Carnegie Mellon
University, 1992.

187

[130] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar, “Supporting GPU sharing
in cloud environments with a transparent runtime consolidation framework,” in
Proceedings of the 20th international symposium on High performance distributed
computing, San Jose, California, USA, 2011, pp. 217-228.

[131] D. J. Quinlan, C. Liao, J. Too, R. P. Matzke, and M. Schordan. "ROSE Compiler
Infrastructure," 2015; http://www.rosecompiler.org.

[132] A. V. Adinetz, and D. Pleiter. "Halloc: A fast and highly scalable GPU dynamic
memory allocator," https://github.com/canonizer/halloc.

[133] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov, “Spamming
botnets: signatures and characteristics,” in Proceedings of the ACM SIGCOMM
2008 conference on Data communication, Seattle, WA, USA, 2008, pp. 171-182.

[134] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and B. Catanzaro, “Nitro:
A Framework for Adaptive Code Variant Tuning,” in Proceedings of the 2014
IEEE 28th International Parallel and Distributed Processing Symposium, 2014, pp.
501-512.

[135] "Profiler User's Guide," http://docs.nvidia.com/cuda/profiler-users-guide/ -
axzz3nGyZAhq7.

[136] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and
applications in vision,” in Proceedings of 2010 IEEE International Symposium on
Circuits and Systems, 2010.

[137] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu,
“Convolutional Neural Networks for Speech Recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 22, pp. 10, 2014.

[138] K. Simonyan, and A. Zisserman, "Very Deep Convolutional Networks for Large-
Scale Image Recognition."

[139] K. He, X. Zhang, S. Ren, and J. Sun, "Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification."

[140] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf, “Deepface: Closing the gap
to human-level performance in face verification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp. 1701-1708.

[141] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a
convolutional network and a graphical model for human pose estimation,” in
Advances in neural information processing systems, 2014, pp. 1799-1807.

[142] R. Lebret, P. O. Pinheiro, and R. Collobert, “Phrase-based image captioning,”
arXiv, no. 1502.03671, 2015.

188

[143] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” in IEEE
International Solid-State Circuits Conference (ISSCC), 2016, pp. 262-263.

[144] T. Song, D. Li, and Y. Yao, “Multi-source data oriented flexible real-time
information fusion platform on FPGA,” in 2011 International Conference on
Electronics, Communications and Control (ICECC), 2011, pp. 4401-4404.

[145] T. Tang, R. Luo, B. Li, H. Li, Y. Wang, and H. Yang, “Energy efficient spiking
neural network design with RRAM devices,” in International Symposium on
Integrated Circuits (ISIC), 2014, pp. 268-271.

[146] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
“Backpropagation for energy-efficient neuromorphic computing,” in Advances in
Neural Information Processing Systems, 2015, pp. 1117-1125.

[147] S. Park, J. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H. Yoo, “An Energy-
Efficient and Scalable Deep Learning/Inference Processor With Tetra-Parallel
MIMD Architecture for Big Data Applications,” IEEE transactions on biomedical
circuits and systems, 2016.

[148] Nvidia, GPU-Based Deep Learning Inference: A Performance and Power
Analysis, 2015.

[149] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and A. Ng, “Deep learning
with COTS HPC systems,” in Proceedings of the 30th international conference on
machine learning, 2013, pp. 1337-1345.

[150] Intel. "Intel Deep Learning Framework," https://01.org/intel-deep-learning-
framework.

[151] Nvidia. "Accelerate Machine Learning with the cuDNN Deep Neural Network
Library," https://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-
cudnn-deep-neural-network-library/.

[152] S. Hadjis, F. Abuzaid, C. Zhang, and C. Re, “Caffe con Troll: Shallow Ideas to
Speed Up Deep Learning,” in Proceedings of the Fourth Workshop on Data
analytics in the Cloud, 2015.

[153] D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the Energy Efficiency of
Deep Convolutional Neural Networks on CPUs and GPUs,” in IEEE International
Conference on Smart City/SocialCom/SustainCom (SustainCom), 2016.

[154] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for Fast Feature
Embedding,” arXiv, 2014.

189

[155] R. Collobert, K. Kavukcuoglu, and C. Farabet, "Torch7: A MATLAB-like
environment for machine learning."

[156] Google, TensorFlow: Large-Scale Machine Learning on heterogeneous
Distributed Systems.

[157] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang, “MXNet: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems,” in Workshop on Machine Learning Systems,
2016.

[158] N. Systems. "Preview release of convolutional kernels,"
https://github.com/NervanaSystems/nervana-lib-gpu-performance-preview.

[159] Nvidia. "NVIDIA CUDNN GPU Accelerated Deep Learning,"
https://developer.nvidia.com/cudnn.

[160] S. Chintala. "convnet-benchmarks," https://github.com/soumith/convnet-
benchmarks.

[161] A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks,”
arXiv, 2014.

[162] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
"OverFeat: Integrated Recognition, Localization and Detection using
Convolutional Networks."

[163] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,” 2014.

[164] Intel. https://01.org/rapl-power-meter.

[165] Nvidia. "NVIDIA System Management Interface,"
https://developer.nvidia.com/nvidia-system-management-interface.

[166] B. Ginsburg. "Caffe-OpenMP," https://github.com/borisgin/caffe/tree/openmp.

[167] N. Wilt, The cuda handbook: A comprehensive guide to gpu programming:
Pearson Education, 2013.

[168] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong, “Effects of
dynamic voltage and frequency scaling on a k20 gpu,” in International
Conference on Parallel Processing (ICPP), , 2013, pp. 826-833.

[169] M.-C. Liu, J. Xu, and D. Li, Learning Convolution Neural Networks on
Heterogenous CPU-GPU Platform, US,to SONY, USPTO, 2015.

190

[170] M. Becchi, K. Sajjapongse, I. Graves, A. Procter, V. Ravi, and S. Chakradhar, “A
virtual memory based runtime to support multi-tenancy in clusters with GPUs,” in
Proceedings of the 21st international symposium on High-Performance Parallel
and Distributed Computing, Delft, The Netherlands, 2012, pp. 97-108.

191

VITA

Da Li obtained his Bachelor of Engineering from the School of Automation, Beijing

Institute of Technology in 2011. After graduation, he attended University of Missouri –

Columbia to pursue his Doctoral of Philosophy in Electrical and Computer Engineering

under Dr. Michela Becchi’s guidance. He interned at Alibaba Group, NEC Laboratories

America, AT&T Labs Research and Sony Electronics U.S. Research Center during his

study and graduated in July 2016.

