
Evaluating the Energy Efficiency of Deep
Convolutional Neural Networks on CPUs and GPUs

Da Li*1, Xinbo Chen*2, Michela Becchi1, Ziliang Zong2
1Dept. of Electrical and Computer Engineering, University of Missouri

2Dept. of Computer Science, Texas State University
dlx7f@mail.missouri.edu, x_c7@txstate.edu, becchim@missouri.edu, ziliang@txstate.edu

Abstract — In recent years convolutional neural networks
(CNNs) have been successfully applied to various applications
that are appropriate for deep learning, from image and video
processing to speech recognition. The advancements in both
hardware (e.g. more powerful GPUs) and software (e.g. deep
learning models, open-source frameworks and supporting
libraries) have significantly improved the accuracy and
training time of CNNs. However, the high speed and accuracy
are at the cost of energy consumption, which has been largely
ignored in previous CNN design. With the size of data sets
grows exponentially, the energy demand for training such data
sets increases rapidly. It is highly desirable to design deep
learning frameworks and algorithms that are both accurate
and energy efficient. In this paper, we conduct a
comprehensive study on the power behavior and energy
efficiency of numerous well-known CNNs and training
frameworks on CPUs and GPUs, and we provide a detailed
workload characterization to facilitate the design of energy
efficient deep learning solutions.

Keywords—energy-efficiency; neural networks; deep learning;
GPUs

I. INTRODUCTION
The history of neural network research can be traced back to
the second half of the last century. In 1958, Frank
Rosenblatt, a psychologist, proposed the concept of
Perceptron and a theory on the operation of neurons in the
human brain [2]. This theory has led to the emergence of a
new field of artificial intelligence, called neural networks.
About thirty years later, Yann LeCun et al. [3] successfully
applied neural networks to recognize handwritten checks and
ZIP codes in mail. However, the training of their neural
network required approximately three days. Later, neural
networks became a core computation in various applications,
from wake-sleep algorithms [4] to the vanishing gradient
problem [5]. However, the high computational requirements
of the training phase continue to be a key factor hindering the
advancement of algorithms and applications based on neural
networks. Recent advancements in software and hardware,
including the use of high throughput GPUs to accelerate
neural network training, have alleviated this problem. It is
now possible to train large and complex neural networks in
reasonable time on relatively inexpensive hardware. This has
led to the rapid growth of neural network-based deep
learning algorithms.

Many deep learning algorithms used in computer vision
rely on convolutional neural networks (a.k.a. CNN). The
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [6], which runs annually since 2010, allows
researchers to evaluate their object detection and image
classification algorithms on over 15 million labeled high-
resolution images from roughly 22 thousands categories. In
2012, a team from the University of Toronto improved the
error rate of image classification from 25.8% to 16.14%
using a CNN model (AlexNet [7]). This neural-network-
based approach has been subsequently increasingly adopted
leading to continuous improvements in the classification
accuracy [8, 9], and CNNs are nowadays widely used in
image recognition, segmentation and object detection [10].
With continuous improvement in neural network models and
algorithms, the accuracy of ILSVRC has already surpassed
human recognition ability (~5%) in 2015 [11]. The need for
large CNN models providing good classification accuracy
has led to efforts aimed to accelerate neural networks’
training.

However, the race for speed and accuracy comes at the
cost of energy consumption, an aspect that has been
overlooked in previous work. While the classification
accuracy has traditionally been considered as the primary
metric of success for image and video recognition
applications, the community has recently recognized the
need for deep neural network implementations that are both
accurate and energy efficient. As a result, in 2015 IEEE
Rebooting Computing has launched the “Low-Power Image
Recognition Challenge” (LPIRC), an initiative aimed to
promote the design of energy efficient image classification
methods. Currently, research in designing energy efficient
CNNs is still in its infancy. The knowledge on the power
consumption behaviors of different CNNs and training
frameworks is very limited.

Modern GPUs comprise hundreds to thousands of
compute cores and can provide high computational power
and throughput. As a result, GPU computing has become the
de-facto approach for CNNs training [12]. Meanwhile, Intel
has recently released the Intel Deep Learning Framework
(IDLF) [13], which provides high performance CNNs
training on CPU platforms. While Nvidia claims that its GPU
framework reports a 11x-14x speedup over the CPU version
of Caffe on an Intel IvyBridge processor [14], S. Hadjis et
al. [15] point out that Nvidia’s comparison is based on an

* = authors contributed equally

unoptimized CPU baseline, and they introduce CPU
optimizations reducing the GPU-CPU performance gap to
only 1.86x. None of these analyses, however, consider the
energy efficiency of training the neural networks.

In this work, we conduct a comprehensive study on the
power behavior and energy efficiency of CNNs on both
CPUs and GPUs. We evaluate popular deep learning
frameworks using energy-related metrics and, for each of
these frameworks, we provide accurate power measurements
using a set of carefully selected networks and layers. We
conduct our evaluation on different processor architectures
(i.e., Intel Xeon CPUs, Nvidia Kepler and Maxwell GPUs)
and explore the effect of a variety of hardware settings on
performance and energy-efficiency.

Our contributions can be summarized as follows:

• We present a comparative study on the energy efficiency
of several popular CNN training frameworks on different
hardware (i.e., Xeon CPU, K20 GPU, Titan X GPU). Our
results provide insights on how the selection of the neural
network design as well as the software and hardware
configuration affect the energy efficiency of the
application.

• We propose a methodology to analyze both the network-
and layer-wise energy consumption of CNN
architectures. By quantifying the energy consumption of
each CNN layer, we identify the power-hungry layers in
the neural network.

• We analyze the behavior of different implementations
(i.e., OpenMP-based) and libraries (e.g. ATLAS,
OpenBLAS, cuDNN) on CPUs and GPUs. Our analysis
covers both performance and energy consumption,
allowing either performance- or energy efficiency-
oriented tuning.

• We study the impact of different hardware settings (i.e.,
Hyper-Threading, ECC) on the training of CNN models.
We also explore the impact of dynamic voltage/frequency
scaling (DVFS) on power and energy consumption.

II. BACKGROUND
Deep learning is a branch of machine learning that uses a
layered architecture of data processing stages for pattern
recognition. Due to its effectiveness in many applications,
deep learning has gained popularity in both academia and
industry. Convolutional neural networks (CNNs) are the
most successful models for deep learning, and they have
been used in various domains, including computer vision
[16] and speech recognition [17].

A. Convolutional Neural Networks
At a high level, convolutional neural networks simulate the
way in which human brains process and recognize images.
They belong to the family of multi-layer perceptrons (MLP)
[2]. A MLP is a multi-layer neural network consisting of an
input layer, an output layer and multiple hidden layers
between the input and output layers. Each hidden layer
represents a function between its inputs and outputs that is
defined by the layer’s parameters.

Convolutional neural networks mainly consist of three
types of layers: convolutional layers (Conv), pooling layers
(Pooling) and fully connected layers (FC). Each layer may
contain thousands to millions of neurons. A single neuron
takes some inputs, computes their weighted sum, and sends
the output to the neurons in the next layer. In this way,
distinct layers apply different operations to their inputs and
produce outputs for the layers that follow. Figure 1 shows an
example of convolutional neural network (LetNet [1]), which
consists of alternated convolutional and pooling layers
followed by a few fully-connected layers.

Convolutional layers: These layers apply convolutions
to the input with several filters and add a bias term to the
results. Very often, a nonlinear function (called activation
function) is also applied to the results. Convolutional layers
exploit spatial connectivity and shared weights. The
parameters of a convolutional layer are reduced dramatically
compared to a typical hidden layer of a MLP. Convolutional
layers are the most computational intensive layers in CNNs.

Pooling layers: These layers perform a nonlinear down-
sampling operation on the input. They partition the input into
a set of sub-regions and output sampled results from these
sub-regions. Based on their sampling method, pooling layers
can be categorized into: maximum pooling, average pooling
and stochastic pooling. Pooling layers progressively reduce
the amount of parameters as well as control model over-
fitting. Pooling layers are usually placed between two
convolutional layers.

Fully connected layers: Unlike in convolutional layers,
neurons in FC layers have full connections to all output from
the preceding layers. As a consequence, a FC layer has many
more parameters than a convolutional layer. Nonetheless,
since convolution operations are replaced by multiplications,
fully connected layers require less computational power.

B. Learning and inference
Using CNNs for machine learning tasks involves three steps:
(1) designing the CNN architecture, (2) learning the
parameters of the CNN (also called “training”), and (3) using
the defined CNN for inference. Since CNNs are back-
propagation learning algorithms, their learning phases can be
divided into: forward propagation, backward propagation
and weight update. In the forward propagation phase, input
data are sent to the neural network to generate the outputs. In
the backward propagation phase, the errors between the
standard outputs and the produced outputs are propagated in
a backward fashion to compute the errors in each layer.
These errors (also called gradients) in each layer will be used
in every weight update. However, for inference, the
parameters of the networks are given and there is only

Fig. 1. Example of Deep Convolutional Neural Network (LeNet).
Image source: [1].

forward propagation to produce the prediction.

III. METHODOLOGY

A. Introduction to CNN Frameworks
In order to be practically applicable, CNNs require software
frameworks that allow high performance training of large-
scale networks including millions of parameters. Popular
open-source CNN frameworks include: Caffe [18], Torch
[19], TensorFlow [20], MXNet [21], Nervana [22] and
CaffeConTroll [15]. All these frameworks except
CaffeConTroll offer both CPU- and GPU-support. In all
cases, GPU support is based on the Nvidia cuDNN library
[23]. In addition to the cuDNN-based implementation, Caffe
and Torch include custom GPU implementations of
convolutional layers, pooling layers and activation functions.

B. Experimental Setup
Benchmark Suite: In our experimental evaluation we

use Convnet [24], an open-source benchmark that includes
most publicly accessible implementations of CNNs. This
benchmark is designed to measure the execution time of the
forward and backward propagation of different
layers/networks. To obtain accurate power measurements,
we apply minor modifications (as described in [25]) to the
Convnet benchmark (e.g., we remove unnecessary timing
and logging code). We test the training phase (forward and
backward propagation) and configure each run to have
multiple (>100) iterations, which simulates the real use of
these frameworks. Also, by default, the batch size is set to
128, which is a commonly used value.

Neural networks: In our evaluation we use four
ImageNet winner neural network models: AlexNet v2 [26],
OverFeat [27], VGG_A [8] and GoogleNet [9]. These
networks have been proven successful models and are
included in the Convnet benchmark.

Hardware: We perform all experiments on a single
machine including a 16-core Intel Xeon E5 - 2650 v2 @
2.6GHz with Hyper-Threading enabled, an Nvidia Tesla

K20m GPU with 5GB memory and an Nvidia Titan X GPU
with about 12GB memory. The machine has 32GB DDR3
main memory and a 128 GB SSD hard drive, and runs
CentOS v7.

Software: The drivers, libraries and frameworks used in
our experiments are: CUDA 7.0, cuDNN v3, OpenBLAS
0.2.16, Caffe (commit ID be163be), Torch 7 (commit ID
eb8d7f2), and TensorFlow (commit ID fd464ca), MXNet
(commit ID d25053) and CaffeConTroll (commit ID
8191f6c). The CPU and DRAM power data are collected via
Intel’s Running Average Power Limit (RAPL) interface [28]
and the GPU power is obtained via the Nvidia System
Management Interface [29].

C. Organization of Experiments
Our evaluation starts with an analysis of performance, power
and energy consumption of the aforementioned CNN
frameworks on GPU and CPU (Section IV). This analysis
also covers the use of different libraries to perform NN
operations (cuDNN on GPU; Atlas, OpenBLAS and MKL
on CPU). We then study how the network topology and the
setting of the batch size and of several hardware parameters
(hyper-threading, ECC, and DVFS) affect performance and
energy efficiency (Section V and VI). Due to the popularity
of the framework and in the interest of space, the evaluation
presented in Section V and VI focuses on Caffe.

IV. OVERALL ENERGY EFFICIENCY RESULTS ON CPU & GPU

A. Native GPU implementations versus cuDNN
Because GPUs can provide more computational power than
general-purpose CPUs, most deep learning frameworks rely
on GPUs to provide fast training and inference. To facilitate
GPU-accelerated deep learning, Nvidia released the cuDNN
library, which includes highly optimized implementations of
common operations found in neural networks (e.g.
convolution, pooling). Although some early developed
frameworks like Caffe and Torch have their own GPU
implementations, newer frameworks (e.g. TensorFlow) rely

Fig. 2. Comparison between native GPU implementation and cuDNN v3 library in Caffe. The numbers on the bars represent the execution time of a single
forward and backward propagation iteration.

on cuDNN for neural network related operations. In this
section we compare native GPU implementations of neural
network operations with those found in the cuDNN library.

Figure 2 presents the results of this analysis on the Caffe
framework, which can be configured to either use a native
GPU implementation or rely on the cuDNN library. We
tested 500 iterations of forward and backward propagation
with a batch size of 128. In the figure, the bars represent the
energy consumption per image processed (left y-axis).
Specifically, the bottom (red) and top (blue) part of each bar
indicate the energy consumption of GPU and CPU,
respectively. The two lines show the average power
consumption (in Watts) of GPU and CPU (idle); the power
consumption scale is on the right y-axis. On top of each bar
we report the execution time of a single iteration. In the
experiments we use two Nvidia GPUs: a K20m and a Titan
X (shown as K20 and TX along the x-axis, respectively) and
four networks (AlexNet, OverFeat, VGG_A and GoogleNet).
Due to its limited memory capacity, we could not run the
VGG_A and GoogleNet networks on the K20m GPU.

As can be observed, cuDNN yields higher GPU power
and lower energy consumption than native GPU code on
both K20m and Titan X. The increase in power consumption
from native GPU kernel to cuDNN varies from 2%
(OverFeat on Titan X) to 48% (GoogleNet on Titan X). On
average, cuDNN increases power consumption by 16% and
reduces energy consumption by 42%. This can be explained
as follows. Due to its higher GPU utilization, cuDNN leads
to higher power consumption than native GPU code.
However, by significantly reducing the training time,
cuDNN diminishes the total energy consumption.

If we compare the power and energy consumption of the
CNN code on different GPU platforms, we can conclude
that, although Titan X consumes more power than K20m, it
is more energy-efficient. Taking AlexNet as an example,
when moving from K20m to Titan X, the energy
consumption is reduced by 15% (for native GPU code) and

by 54% (for cuDNN). Compared to K20m, Titan X can
deliver more computational power, leading to higher power
consumption but also to lower execution time. The reduction
in execution time is significant enough to yield better energy
efficiency despite the higher power consumption.

Figure 2 shows another interesting fact: the CPU
consumes a significant amount of energy although it mostly
is in the idle state, which should not be ignored. As can be
seen, the CPU idle power is about 67w in all cases, while the
GPU power varies from 104w to 134w on K20m and from
204w to 228w on Titan X. In general, the CPU accounts for
22% to 40% of the total energy consumption. This indicates
that, to be energy-efficient, a CNN framework should utilize
both CPU and GPU during the training phase.

Since cuDNN leads to better performance and is more
energy-efficient than native GPU implementations of neural
network related kernels, we use cuDNN as the default GPU
library in all remaining experiments.

B. GPU frameworks
There are many frameworks that use GPUs to accelerate
CNN training. We selected five popular frameworks: Caffe
[18], Torch [19], TensorFlow [20], MXNet [21] and Nervana
[22]. The first four support both K20m and Titan X, while
Nervana supports only Titan X. Since Nervana supports 16-
and 32-bit floating-point arithmetic, for this framework we
have two settings (TX-fp16 and TX-fp32, respectively).
Figure 3 reports the results obtained by running forward and
backward propagation on AlexNet using a batch size of 128.
As in Figure 2, the bars represent the energy consumption
per image (y-axis on the left), the lines show the CPU/GPU
power in Watts (y-axis on the right), and the numbers on the
bars represent the execution time of each iteration.

As can be seen, in these experiments Titan X consumes
an average power of 227w, 74% more than K20 (130w).
Torch outperforms other frameworks in terms of energy
efficiency on K20m, and performs similarly to Caffe and
Nervana on Titan X. Using 16-bit floating-point arithmetic

Fig. 3. Comparison among different frameworks on K20m and TitanX GPUs. The numbers on the bars represent the execution time of a single forward and
backward propagation iteration.

allows a 10% energy reduction over single precision
arithmetic. We can again observe that CPU idle power
cannot be ignored, and is especially significant in the case of
K20 (since this GPU leads to longer execution times).

C. CPU frameworks
In this section we study the energy and power behavior of
CNN frameworks when using only CPUs. Because of its
wide use and flexibility, in this set of experiments we focus
on Caffe and its derivatives. Caffe supports three CPU
libraries (Atlas, OpenBLAS and MKL) that can be statically
configured. In our evaluation, we also consider Caffe-
OpenMP (an optimized CPU version of Caffe) [30] and
CaffeConTroll (a Caffe’s derivative that uses an optimization
called “lowering” [15]). The results of this comparison are
shown in Figure 4.

The performance of these frameworks and libraries on
CPU is significantly affected by the degree of
multithreading. Our machine has 16 physical cores and all
the CPU versions are configured to spawn at most 16
threads. To accurately measure power and energy
consumption of CPU-based frameworks, we also measure
and report the DRAM power data.

As can be seen from Figure 4, the average power
consumption of different CPU-based frameworks varies from
103w to 188w. Compared to CPU, DRAM consumes a
relatively small portion of energy (11%). Among these CPU
versions, Caffe-OpenMP is the most energy-efficient and
consumes 2.9 Joules per image processed. It is worth noting
that while Caffe-OpenMP is more energy efficient than other
CPU implementations, it consumes over twice the amount of
energy than all considered GPU frameworks. We can
conclude that CPUs are generally less energy-efficient than
the GPUs for training CNNs.

V. EFFECT OF NN AND BATCH SIZE CONFIGURATION

A. NN Structure
In this section, we focus on the impact of the network’s
structure on energy efficiency. To this end, we disassemble
AlexNet and OverFeat into four types of layers
(convolutional, pooling, fully connected, and ReLU) and
measure the distribution of the energy consumption across
these layers. In order to ensure that our approach is accurate,
we verified that the cumulative energy consumption results
from all layers are coherent with the measurements on the

integrated network. In Figure 5 we show the percentage
breakdown of the energy consumption across layers on GPU
and CPU using Caffe. As can be seen, convolutional layers
are predominant and consume 87% of the total energy
consumption. The second most power-hungry layers are fully
connected layers, which account for 10% of the total energy
consumption. Pooling layers and ReLU layers (which apply
activation functions) account for less than 5% of the energy
consumption. This trend is even more noticeable for
OverFeat. In OverFeat, the convolutional layers have more
filters (leading to a larger number of neurons) than in
AlexNet. Although OverFeat has the same number of layers
as AlexNet, its convolutional layers consume a larger portion
of the energy, as high as 95%, 93% and 92% on K20m, Titan
X and CPU, respectively. From this analysis we can
conclude that, in order to optimize energy consumption of
deep CNNs, the priority should be on improving the energy
efficiency of the convolutional layers.

B. Batch Size
The batch size is an important setting when training a neural
network. Larger batch sizes lead to more images being
packed into a batch and sent to the network for training in a
single iteration. Intuitively, larger batches allow more data-
level parallelism. However, loading a larger batch requires
more memory to store the data, possibly exhausting the
limited GPU memory.

Figure 6 reports the power and energy consumption of
AlexNet on K20, Titan X and CPU when the batch size
varies from 8 to 256. On all three hardware platforms,
increasing the batch size leads to linear growth in power.
Small batch sizes (e.g., 8 or 16) cause CPU and GPU under-
utilization. An increase in the batch size will yield higher
hardware utilization, and, consequently, an increase in power
consumption. However, as can be seen, increasing the batch
size can reduce the energy consumption per image. For
instance, when the batch size is increased from 8 to 16, the
energy consumption per image is reduced by 13%, 18% and
31% on K20, Titan X and CPU, respectively. When the
hardware utilization saturates, however, a further increase in
the batch size does not further improve energy consumption.
For example, when increasing the batch size from 128 to
256, the energy consumption per image reduces only by 4%

Fig. 4. Comparison among CNN frameworks on CPU.

Fig. 5. Breakdown of energy consumption of AlexNet and OverFeat
on K20, Titan X and CPU using Caffe.

on K20 and by 7% on CPU, while Titan X does not benefit
from large batch sizes.

VI. EFFECT OF HARDWARE SETTINGS
In this section, we analyze the impact of different hardware
settings on power and energy consumption. Specifically, we
investigate how the use of Hyper-Threading on CPU and the
use of ECC and DVFS on GPU affect the performance,
power and energy consumption of CNNs.

A. Hyper-Threading
Hyper-Threading (HT) is a technology introduced by Intel in
order to improve the performance obtainable through
parallelization. With HT enabled, the operating system treats
each physical processor as two logical cores. HT can
improve the performance of memory/IO intensive
applications by hiding their latencies, but it often degrades
the performance of compute intensive workloads. To
evaluate the impact of HT on deep learning frameworks, we
conducted experiments with HT enabled/disabled, in each
case configuring the number of threads to equal the number
of logical cores. Because our machine has sixteen physical
cores, when HT is enabled we set the application to spawn
thirty-two threads.

Figure 7 shows the results reported on Caffe and its
derivatives. CPU and DRAM energies are stacked into one
bar named HT-E-XXX or HT-D-XXX. In the former case, HT
is enabled; in the latter case, HT is disabled. The y-axis on
the left side shows the energy consumption per image. The
lines represent the power curves of CPU and DRAM and the
power scale is on the y-axis on the right side. The values on
the bars indicate the total execution time of each setting.
Although different libraries and implementations experience
different power consumptions, the power consumption is not
significantly affected by HT. However, HT affects the
execution time and, consequently, the energy consumption.
As can be seen, while MKL reports a slight benefit from
enabling HT (5% speedup and 4.8% energy saving),
OpenBLAS, OpenMP, CaffeConTroll all suffer various
degrees of performance degradation and consume more
energy when HT is enabled. In the worst case (Caffe with
OpenBLAS), enabling HT leads to an increase in execution
time and energy consumption by 45% and 42%, respectively.
This experiment shows that performance and energy

efficiency of neural network training are generally negatively
affected by HT, since this application saturates the hardware
with computation and does not experience benefits from
memory latency hiding.

B. ECC
Nowadays Error Correction Code RAM is the standard
configuration for high performance computing clusters. With
ECC enabled, RAM can detect and correct single bit errors.
This feature is also available on high-end GPUs, like the
ones used in this study.

Although enabling ECC can reduce errors, this feature
does not come for free. When ECC is enabled, some bits are
reserved, thus reducing the available memory footprint and
bandwidth. In addition, enabling ECC causes applications to
suffer from more expensive synchronization and uncoalesced
memory accesses [31].

We have tested the use of ECC on K20m using Caffe
along with the cuDNN library. Our experiments show no
significant changes in performance and energy efficiency
when ECC is enabled. This is because CNN training does not
require synchronization operations and present relatively
regular and coalesced memory access patterns. However, we
have observed that enabling ECC leads to a 6.2% increase in
memory utilization. Since deep CNN applications typically
do not require bit-level accuracy and can tolerate random
errors, for these applications disabling ECC can be beneficial
in that it allows a better utilization of the limited memory
capacity of the GPU. We note that modern GPUs have from
1 to 12 GB of device memory, while CPUs are typically
equipped with 16GB up to 1 TB RAM.

C. DVFS
Dynamic Voltage and Frequency Scaling (DVFS) is an
advanced power-saving technology that aims to lower a
component’s power state while still meeting the performance
requirement of the workload [32]. Both Titan X and K20m
GPUs support DVFS with various clock frequencies. On
these devices, DVFS can control two clock frequencies:
memory frequency and core frequency. Nvidia provides the
nvidia-smi utility and the Nvidia Management Library
(NVML) to control these frequencies.

Fig. 7. Experimental results with different Hyper-Threading settings.
HT-E-XXX indicates that HT is enabled, while HT-D-XXX indicates
that HT is disabled. The experiments are conducted on Caffe.

Fig. 6. Power (W) and energy consumption (Joule/Image) on K20m,
Titan X and CPU with different batch sizes using Caffe.

Table 1 shows the clock frequencies supported on K20m
for GPU cores and memory. When the memory frequency is
set to 324MHz, the only core frequency is 324Hz. Titan X
support wider range of core and memory frequencies. Due to
space limits, in this paper we only report results K20m.

Figure 8 shows the power, energy and performance
results obtained when applying different memory and core
frequencies to CNN training. In the experiments, the batch
size is varied from 16 to 128. As expected, power
consumption increases with the operation frequency. In the
experiments, the power consumption varies from 44w at
324/324 MHz frequencies to 118w at 758/2600 MHz
frequencies. This wide range of power consumption degrees
shows that frequency scaling is an effective method that can
be leveraged to meet power cap requirements.

For energy-consumption, our experiments show a
“valley” trend: the energy-consumption is relatively high at
both the lowest and highest frequencies, and is relatively low
at intermediate frequencies. This is because low frequency
leads to low power consumption at the cost of longer
execution time, negatively affecting the total energy
consumption. Conversely, increasing frequency beyond a
certain level increases the power consumption while
providing only a limited return on performance, also leading
to energy inefficiency. This “energy-valley” trend indicates
that training deep neural networks in an energy-aware
fashion requires operating at frequencies that allow a good
trade-off between execution time and power consumption.

VII. RELATED WORK
With the emergence of powerful GPUs and the availability
of large data sets for training, we have witnessed a
significant improvement of deep CNNs in terms of training
time and accuracy. The Visual Geometry Group (VGG) at
University of Oxford has designed a 16- and a 19-layer
model with a 7.4% and a 7.3% top-5 error rate, respectively
[8]. Microsoft has recently proposed a NN model with 152
layers – 8x deeper than the VGG nets – reporting a 3.57 %
error rate [11]. This fast development has led to the
proliferation of applications based on NNs. Examples of
emerging applications based on NNs include: auto tagging
[33], the estimation of a person’s pose [34], and the
generation of a descriptive sentence from an image [35].
While previous work has focused on performance, our paper

focuses on evaluating the energy efficiency of deep neural
networks on CPUs and GPUs.

Although the mainstream approach for training deep
convolutional neural networks is using CPUs and GPUs,
researchers have recently started to explore the use of other
architectures and devices, including FPGA [36], RRAM
[37], neuromorphic processors [38] and Tetra-Parallel
architecture [39]. These hardware implementations are
specifically tailored to convolutional neural networks and
yield impressive results in terms of performance and energy
efficiency. However, these hardware innovations are still at
an early stage and it is urgent to understand the power and
energy behavior of commonly used neural network
frameworks on CPU and GPU – the main goal of our paper.

In spite of the advancement in the development of deeper
and more complicated neural network structures, research on
investigating the energy behavior of different neural
networks and software frameworks is still in its infancy. In
its white paper [25], Nvidia provides limited power and
energy consumption results for CNN inference on two
frameworks. Our paper distinguishes itself by providing a
comprehensive study on the energy-efficiency of deep neural
network training that covers different frameworks, different
platforms and different hardware settings.

VIII. CONCOLUSION
In this paper, we have conducted a comprehensive evaluation
of the energy efficiency of deep CNN training frameworks.
We have performed experiments using several popular DNN
frameworks and libraries. Our evaluation considers both
CPU and GPU. Besides showing network-wide results, we
have studied how the network topology and the batch size
affect power and energy consumption. In this process, we
have identified the power-hungry layers of two ImageNet-
winner neural networks. Finally, we have explored the
impact of several CPU and GPU hardware settings (i.e. HT,
ECC and DVFS) on performance and energy efficiency of
CNNs. Our results can be used for designing energy-efficient
deep CNN frameworks and neural network architectures.

ACKNOWLEDGMENT
This work has been supported by NSF awards CNS-
1216756, CCF-1452454, CNS-1305359, and by equipment
donations from Nvidia Corporation.

Fig. 8. Power and energy consumption using different memory and
core frequencies. The batch size is varied from 16 to 128. The numbers
on the bars are values of execution time per iteration.

TABLE I. MEMORY AND CORE FREQUENCIES SUPPORTED ON K20M
GPU

Memory Frequency (MHz) GPU Core Frequency (MHz)

2600

758

705

666

640

614

324 324

REFERENCES
[1] TheanoTeam. "Convolutional Neural Networks (LeNet),"

http://deeplearning.net/tutorial/lenet.html.
[2] F. Rosenblatt, “The perceptron: a probabilistic model for information

storage and organization in the brain,” Psychological review, vol.
386, 1958.

[3] Y. Le Cun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon,
D. Henderson, R. E. Howard, and W. Hubbard, “Handwritten digit
recognition: Applications of neural net chips and automatic learning,”
IEEE Communication, vol. 27, no. 11, pp. 41-46, 1989.

[4] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, “The" wake-
sleep" algorithm for unsupervised neural networks,” Science, vol.
268, no. 5214, pp. 1158-1161, 1995.

[5] S. Hochreiter, “The vanishing gradient problem during learning
recurrent neural nets and problem solutions,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 02,
pp. 107-116, 1998.

[6] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Santheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and F.-F.
Li, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision,vol.115, pp. 211-252, 2015.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in Proc. of
NIPS, 2012.

[8] K. Simonyan, and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” in Proc. of ICLR,
2015.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, “Going Deeper with
Convolutions,” in Proc. of CVPR, 2015.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. Riedmiller, “Playing Atari with Deep
Reinforcement Learning,” arXiv, no. 1312.5602, 2013.

[11] K. He, X. Zhang, S. Ren, and J. Sun, "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification."

[12] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and A. Ng,
“Deep learning with COTS HPC systems,” in Proc. of ICML, 2013.

[13] Intel. "Intel® Deep Learning Framework," 2016; https://01.org/intel-
deep-learning-framework.

[14] Nvidia. "Accelerate Machine Learning with the cuDNN Deep Neural
Network Library,"
https://devblogs.nvidia.com/parallelforall/accelerate-machine-
learning-cudnn-deep-neural-network-library/.

[15] S. Hadjis, F. Abuzaid, C. Zhang, and C. Re, “Caffe con Troll:
Shallow Ideas to Speed Up Deep Learning,” in Proc. of DanaC, 2015.

[16] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proc. of ISCS, 2010.

[17] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D.
Yu, “Convolutional Neural Networks for Speech Recognition,”
IEEE/ACM Trans. on Audio, Speech, and Language Processing, vol.
22, pp. 10, 2014.

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” in Proc. of ACMMM, 2014.

[19] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A
MATLAB-like environment for machine learning,” in BigLearn,
NIPS Workshop, 2011.

[20] Google. "TensorFlow: an Open Source Software Library for Machine
Intelligence," https://www.tensorflow.org.

[21] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C.
Zhang, and Z. Zhang, “MXNet: A Flexible and Efficient Machine
Learning Library for Heterogeneous Distributed Systems,” in Proc. of
LearningSys, 2016.

[22] N. Systems. "Preview release of convolutional kernels,"
https://github.com/NervanaSystems/nervana-lib-gpu-performance-
preview.

[23] Nvidia. "NVIDIA CUDNN GPU Accelerated Deep Learning,"
https://developer.nvidia.com/cudnn.

[24] S. Chintala. "convnet-benchmarks,"
https://github.com/soumith/convnet-benchmarks.

[25] Nvidia, GPU-Based Deep Learning Inference: A Performance and
Power Analysis, 2015.

[26] A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” arXiv, no. 1404.5997, 2014.

[27] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y.
LeCun, “OverFeat: Integrated Recognition, Localization and
Detection using Convolutional Networks,” in Proc. of ICLR, 2014.

[28] Intel. https://01.org/rapl-power-meter.
[29] Nvidia. "NVIDIA System Management Interface,"

https://developer.nvidia.com/nvidia-system-management-interface.
[30] B. Ginsburg. "Caffe-OpenMP,"

https://github.com/borisgin/caffe/tree/openmp.
[31] N. Wilt, The cuda handbook: A comprehensive guide to gpu

programming: Pearson Education, 2013.
[32] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong,

“Effects of dynamic voltage and frequency scaling on a k20 gpu,” in
Proc. of ICPP, 2013.

[33] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf, “Deepface:
Closing the gap to human-level performance in face verification,” in
Proc. of CVPR, 2014.

[34] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a
convolutional network and a graphical model for human pose
estimation,” in Proc. of NIPS, 2014.

[35] R. Lebret, P. O. Pinheiro, and R. Collobert, “Phrase-based image
captioning,” arXiv, no. 1502.03671, 2015.

[36] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks,” in Proc. of ISSCC, 2016.

[37] T. Tang, R. Luo, B. Li, H. Li, Y. Wang, and H. Yang, “Energy
efficient spiking neural network design with RRAM devices,” in
Proc. of ISIC, 2014.

[38] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S.
Modha, “Backpropagation for energy-efficient neuromorphic
computing,” in Proc. of NIPS, 2015.

[39] S. Park, J. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H. Yoo, “An
Energy-Efficient and Scalable Deep Learning/Inference Processor
With Tetra-Parallel MIMD Architecture for Big Data Applications,”
IEEE Trans. on Biomedical Circuits and Systems, 2016.

