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Abstract — In recent years convolutional neural networks 
(CNNs) have been successfully applied to various applications 
that are appropriate for deep learning, from image and video 
processing to speech recognition. The advancements in both 
hardware (e.g. more powerful GPUs) and software (e.g. deep 
learning models, open-source frameworks and supporting 
libraries) have significantly improved the accuracy and 
training time of CNNs. However, the high speed and accuracy 
are at the cost of energy consumption, which has been largely 
ignored in previous CNN design. With the size of data sets 
grows exponentially, the energy demand for training such data 
sets increases rapidly. It is highly desirable to design deep 
learning frameworks and algorithms that are both accurate 
and energy efficient. In this paper, we conduct a 
comprehensive study on the power behavior and energy 
efficiency of numerous well-known CNNs and training 
frameworks on CPUs and GPUs, and we provide a detailed 
workload characterization to facilitate the design of energy 
efficient deep learning solutions. 

Keywords—energy-efficiency; neural networks; deep learning; 
GPUs  

I. INTRODUCTION 
The history of neural network research can be traced back to 
the second half of the last century. In 1958, Frank 
Rosenblatt, a psychologist, proposed the concept of 
Perceptron and a theory on the operation of neurons in the 
human brain [2]. This theory has led to the emergence of a 
new field of artificial intelligence, called neural networks.  
About thirty years later, Yann LeCun et al. [3] successfully 
applied neural networks to recognize handwritten checks and 
ZIP codes in mail. However, the training of their neural 
network required approximately three days. Later, neural 
networks became a core computation in various applications, 
from wake-sleep algorithms [4] to the vanishing gradient 
problem [5]. However, the high computational requirements 
of the training phase continue to be a key factor hindering the 
advancement of algorithms and applications based on neural 
networks. Recent advancements in software and hardware, 
including the use of high throughput GPUs to accelerate 
neural network training, have alleviated this problem. It is 
now possible to train large and complex neural networks in 
reasonable time on relatively inexpensive hardware. This has 
led to the rapid growth of neural network-based deep 
learning algorithms.  

Many deep learning algorithms used in computer vision 
rely on convolutional neural networks (a.k.a. CNN). The 
ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) [6], which runs annually since 2010, allows 
researchers to evaluate their object detection and image 
classification algorithms on over 15 million labeled high-
resolution images from roughly 22 thousands categories. In 
2012, a team from the University of Toronto improved the 
error rate of image classification from 25.8% to 16.14% 
using a CNN model (AlexNet [7]). This neural-network-
based approach has been subsequently increasingly adopted 
leading to continuous improvements in the classification 
accuracy [8, 9], and CNNs are nowadays widely used in 
image recognition, segmentation and object detection [10]. 
With continuous improvement in neural network models and 
algorithms, the accuracy of ILSVRC has already surpassed 
human recognition ability (~5%) in 2015 [11]. The need for 
large CNN models providing good classification accuracy 
has led to efforts aimed to accelerate neural networks’ 
training.  

However, the race for speed and accuracy comes at the 
cost of energy consumption, an aspect that has been 
overlooked in previous work. While the classification 
accuracy has traditionally been considered as the primary 
metric of success for image and video recognition 
applications, the community has recently recognized the 
need for deep neural network implementations that are both 
accurate and energy efficient. As a result, in 2015 IEEE 
Rebooting Computing has launched the “Low-Power Image 
Recognition Challenge” (LPIRC), an initiative aimed to 
promote the design of energy efficient image classification 
methods.  Currently, research in designing energy efficient 
CNNs is still in its infancy. The knowledge on the power 
consumption behaviors of different CNNs and training 
frameworks is very limited.   

Modern GPUs comprise hundreds to thousands of 
compute cores and can provide high computational power 
and throughput. As a result, GPU computing has become the 
de-facto approach for CNNs training [12]. Meanwhile, Intel 
has recently released the Intel Deep Learning Framework 
(IDLF) [13], which provides high performance CNNs 
training on CPU platforms. While Nvidia claims that its GPU 
framework reports a 11x-14x speedup over the CPU version 
of Caffe on an Intel IvyBridge processor [14],  S. Hadjis et 
al. [15] point out that Nvidia’s comparison is based on an 
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unoptimized CPU baseline, and they introduce CPU 
optimizations reducing the GPU-CPU performance gap to 
only 1.86x. None of these analyses, however, consider the 
energy efficiency of training the neural networks.  

In this work, we conduct a comprehensive study on the 
power behavior and energy efficiency of CNNs on both 
CPUs and GPUs. We evaluate popular deep learning 
frameworks using energy-related metrics and, for each of 
these frameworks, we provide accurate power measurements 
using a set of carefully selected networks and layers. We 
conduct our evaluation on different processor architectures 
(i.e., Intel Xeon CPUs, Nvidia Kepler and Maxwell GPUs) 
and explore the effect of a variety of hardware settings on 
performance and energy-efficiency.  

Our contributions can be summarized as follows: 

• We present a comparative study on the energy efficiency 
of several popular CNN training frameworks on different 
hardware (i.e., Xeon CPU, K20 GPU, Titan X GPU). Our 
results provide insights on how the selection of the neural 
network design as well as the software and hardware 
configuration affect the energy efficiency of the 
application.   

• We propose a methodology to analyze both the network- 
and layer-wise energy consumption of CNN 
architectures. By quantifying the energy consumption of 
each CNN layer, we identify the power-hungry layers in 
the neural network. 

• We analyze the behavior of different implementations 
(i.e., OpenMP-based) and libraries (e.g. ATLAS, 
OpenBLAS, cuDNN) on CPUs and GPUs. Our analysis 
covers both performance and energy consumption, 
allowing either performance- or energy efficiency-
oriented tuning.  

• We study the impact of different hardware settings (i.e., 
Hyper-Threading, ECC) on the training of CNN models. 
We also explore the impact of dynamic voltage/frequency 
scaling (DVFS) on power and energy consumption.  

II. BACKGROUND 
Deep learning is a branch of machine learning that uses a 
layered architecture of data processing stages for pattern 
recognition. Due to its effectiveness in many applications, 
deep learning has gained popularity in both academia and 
industry. Convolutional neural networks (CNNs) are the 
most successful models for deep learning, and they have 
been used in various domains, including computer vision 
[16] and speech recognition [17]. 

A. Convolutional Neural Networks 
At a high level, convolutional neural networks simulate the 
way in which human brains process and recognize images. 
They belong to the family of multi-layer perceptrons (MLP) 
[2]. A MLP is a multi-layer neural network consisting of an 
input layer, an output layer and multiple hidden layers 
between the input and output layers. Each hidden layer 
represents a function between its inputs and outputs that is 
defined by the layer’s parameters.  

Convolutional neural networks mainly consist of three 
types of layers: convolutional layers (Conv), pooling layers 
(Pooling) and fully connected layers (FC). Each layer may 
contain thousands to millions of neurons. A single neuron 
takes some inputs, computes their weighted sum, and sends 
the output to the neurons in the next layer. In this way, 
distinct layers apply different operations to their inputs and 
produce outputs for the layers that follow. Figure 1 shows an 
example of convolutional neural network (LetNet [1]), which 
consists of alternated convolutional and pooling layers 
followed by a few fully-connected layers. 

Convolutional layers: These layers apply convolutions 
to the input with several filters and add a bias term to the 
results. Very often, a nonlinear function (called activation 
function) is also applied to the results. Convolutional layers 
exploit spatial connectivity and shared weights. The 
parameters of a convolutional layer are reduced dramatically 
compared to a typical hidden layer of a MLP. Convolutional 
layers are the most computational intensive layers in CNNs. 

Pooling layers: These layers perform a nonlinear down-
sampling operation on the input. They partition the input into 
a set of sub-regions and output sampled results from these 
sub-regions. Based on their sampling method, pooling layers 
can be categorized into: maximum pooling, average pooling 
and stochastic pooling. Pooling layers progressively reduce 
the amount of parameters as well as control model over-
fitting. Pooling layers are usually placed between two 
convolutional layers. 

Fully connected layers: Unlike in convolutional layers, 
neurons in FC layers have full connections to all output from 
the preceding layers. As a consequence, a FC layer has many 
more parameters than a convolutional layer. Nonetheless, 
since convolution operations are replaced by multiplications, 
fully connected layers require less computational power.  

B. Learning and inference 
Using CNNs for machine learning tasks involves three steps: 
(1) designing the CNN architecture, (2) learning the 
parameters of the CNN (also called “training”), and (3) using 
the defined CNN for inference. Since CNNs are back-
propagation learning algorithms, their learning phases can be 
divided into: forward propagation, backward propagation 
and weight update. In the forward propagation phase, input 
data are sent to the neural network to generate the outputs. In 
the backward propagation phase, the errors between the 
standard outputs and the produced outputs are propagated in 
a backward fashion to compute the errors in each layer. 
These errors (also called gradients) in each layer will be used 
in every weight update. However, for inference, the 
parameters of the networks are given and there is only 

 
Fig. 1. Example of Deep Convolutional Neural Network (LeNet). 
Image source: [1]. 



forward propagation to produce the prediction.  

III. METHODOLOGY 

A. Introduction to CNN Frameworks 
In order to be practically applicable, CNNs require software 
frameworks that allow high performance training of large-
scale networks including millions of parameters. Popular 
open-source CNN frameworks include: Caffe [18], Torch 
[19], TensorFlow [20], MXNet [21], Nervana [22] and 
CaffeConTroll [15]. All these frameworks except 
CaffeConTroll offer both CPU- and GPU-support. In all 
cases, GPU support is based on the Nvidia cuDNN library 
[23]. In addition to the cuDNN-based implementation, Caffe 
and Torch include custom GPU implementations of 
convolutional layers, pooling layers and activation functions. 

B. Experimental Setup 
Benchmark Suite: In our experimental evaluation we 

use Convnet [24], an open-source benchmark that includes 
most publicly accessible implementations of CNNs. This 
benchmark is designed to measure the execution time of the 
forward and backward propagation of different 
layers/networks. To obtain accurate power measurements, 
we apply minor modifications (as described in [25]) to the 
Convnet benchmark (e.g., we remove unnecessary timing 
and logging code). We test the training phase (forward and 
backward propagation) and configure each run to have 
multiple (>100) iterations, which simulates the real use of 
these frameworks. Also, by default, the batch size is set to 
128, which is a commonly used value. 

Neural networks: In our evaluation we use four 
ImageNet winner neural network models: AlexNet v2 [26], 
OverFeat [27], VGG_A [8] and GoogleNet [9]. These 
networks have been proven successful models and are 
included in the Convnet benchmark. 

Hardware: We perform all experiments on a single 
machine including a 16-core Intel Xeon E5 - 2650 v2 @ 
2.6GHz with Hyper-Threading enabled, an Nvidia Tesla 

K20m GPU with 5GB memory and an Nvidia Titan X GPU 
with about 12GB memory. The machine has 32GB DDR3 
main memory and a 128 GB SSD hard drive, and runs 
CentOS v7. 

Software: The drivers, libraries and frameworks used in 
our experiments are: CUDA 7.0, cuDNN v3, OpenBLAS 
0.2.16, Caffe (commit ID be163be), Torch 7 (commit ID 
eb8d7f2), and TensorFlow (commit ID fd464ca), MXNet 
(commit ID d25053) and CaffeConTroll (commit ID 
8191f6c). The CPU and DRAM power data are collected via 
Intel’s Running Average Power Limit (RAPL) interface [28] 
and the GPU power is obtained via the Nvidia System 
Management Interface [29].  

C. Organization of Experiments 
Our evaluation starts with an analysis of performance, power 
and energy consumption of the aforementioned CNN 
frameworks on GPU and CPU (Section IV). This analysis 
also covers the use of different libraries to perform NN 
operations (cuDNN on GPU; Atlas, OpenBLAS and MKL 
on CPU). We then study how the network topology and the 
setting of the batch size and of several hardware parameters 
(hyper-threading, ECC, and DVFS) affect performance and 
energy efficiency (Section V and VI). Due to the popularity 
of the framework and in the interest of space, the evaluation 
presented in Section V and VI focuses on Caffe. 

IV. OVERALL ENERGY EFFICIENCY RESULTS ON CPU & GPU 

A. Native GPU implementations versus cuDNN 
Because GPUs can provide more computational power than 
general-purpose CPUs, most deep learning frameworks rely 
on GPUs to provide fast training and inference. To facilitate 
GPU-accelerated deep learning, Nvidia released the cuDNN 
library, which includes highly optimized implementations of 
common operations found in neural networks (e.g. 
convolution, pooling). Although some early developed 
frameworks like Caffe and Torch have their own GPU 
implementations, newer frameworks (e.g. TensorFlow) rely 

 
Fig. 2. Comparison between native GPU implementation and cuDNN v3 library in Caffe. The numbers on the bars represent the execution time of a single  
forward and backward propagation iteration. 



on cuDNN for neural network related operations. In this 
section we compare native GPU implementations of neural 
network operations with those found in the cuDNN library.  

Figure 2 presents the results of this analysis on the Caffe 
framework, which can be configured to either use a native 
GPU implementation or rely on the cuDNN library. We 
tested 500 iterations of forward and backward propagation 
with a batch size of 128. In the figure, the bars represent the 
energy consumption per image processed (left y-axis). 
Specifically, the bottom (red) and top (blue) part of each bar 
indicate the energy consumption of GPU and CPU, 
respectively. The two lines show the average power 
consumption (in Watts) of GPU and CPU (idle); the power 
consumption scale is on the right y-axis. On top of each bar 
we report the execution time of a single iteration. In the 
experiments we use two Nvidia GPUs: a K20m and a Titan 
X (shown as K20 and TX along the x-axis, respectively) and 
four networks (AlexNet, OverFeat, VGG_A and GoogleNet). 
Due to its limited memory capacity, we could not run the 
VGG_A and GoogleNet networks on the K20m GPU.  

As can be observed, cuDNN yields higher GPU power 
and lower energy consumption than native GPU code on 
both K20m and Titan X. The increase in power consumption 
from native GPU kernel to cuDNN varies from 2% 
(OverFeat on Titan X) to 48% (GoogleNet on Titan X). On 
average, cuDNN increases power consumption by 16% and 
reduces energy consumption by 42%. This can be explained 
as follows. Due to its higher GPU utilization, cuDNN leads 
to higher power consumption than native GPU code. 
However, by significantly reducing the training time, 
cuDNN diminishes the total energy consumption. 

If we compare the power and energy consumption of the 
CNN code on different GPU platforms, we can conclude 
that, although Titan X consumes more power than K20m, it 
is more energy-efficient. Taking AlexNet as an example, 
when moving from K20m to Titan X, the energy 
consumption is reduced by 15% (for native GPU code) and 

by 54% (for cuDNN). Compared to K20m, Titan X can 
deliver more computational power, leading to higher power 
consumption but also to lower execution time. The reduction 
in execution time is significant enough to yield better energy 
efficiency despite the higher power consumption.  

Figure 2 shows another interesting fact: the CPU 
consumes a significant amount of energy although it mostly 
is in the idle state, which should not be ignored. As can be 
seen, the CPU idle power is about 67w in all cases, while the 
GPU power varies from 104w to 134w on K20m and from 
204w to 228w on Titan X. In general, the CPU accounts for 
22% to 40% of the total energy consumption. This indicates 
that, to be energy-efficient, a CNN framework should utilize 
both CPU and GPU during the training phase.  

Since cuDNN leads to better performance and is more 
energy-efficient than native GPU implementations of neural 
network related kernels, we use cuDNN as the default GPU 
library in all remaining experiments.  

B. GPU frameworks 
There are many frameworks that use GPUs to accelerate 
CNN training. We selected five popular frameworks: Caffe 
[18], Torch [19], TensorFlow [20], MXNet [21] and Nervana 
[22]. The first four support both K20m and Titan X, while 
Nervana supports only Titan X. Since Nervana supports 16- 
and 32-bit floating-point arithmetic, for this framework we 
have two settings (TX-fp16 and TX-fp32, respectively). 
Figure 3 reports the results obtained by running forward and 
backward propagation on AlexNet using a batch size of 128. 
As in Figure 2, the bars represent the energy consumption 
per image (y-axis on the left), the lines show the CPU/GPU 
power in Watts (y-axis on the right), and the numbers on the 
bars represent the execution time of each iteration.  

As can be seen, in these experiments Titan X consumes 
an average power of 227w, 74% more than K20 (130w). 
Torch outperforms other frameworks in terms of energy 
efficiency on K20m, and performs similarly to Caffe and 
Nervana on Titan X. Using 16-bit floating-point arithmetic 

 
Fig. 3. Comparison among different frameworks on K20m and TitanX GPUs. The numbers on the bars represent the execution time of a single forward and 
backward propagation iteration. 



allows a 10% energy reduction over single precision 
arithmetic. We can again observe that CPU idle power 
cannot be ignored, and is especially significant in the case of 
K20 (since this GPU leads to longer execution times).  

C. CPU frameworks 
In this section we study the energy and power behavior of 
CNN frameworks when using only CPUs. Because of its 
wide use and flexibility, in this set of experiments we focus 
on Caffe and its derivatives. Caffe supports three CPU 
libraries (Atlas, OpenBLAS and MKL) that can be statically 
configured. In our evaluation, we also consider Caffe-
OpenMP (an optimized CPU version of Caffe) [30] and 
CaffeConTroll (a Caffe’s derivative that uses an optimization 
called “lowering” [15]). The results of this comparison are 
shown in Figure 4. 

The performance of these frameworks and libraries on 
CPU is significantly affected by the degree of 
multithreading. Our machine has 16 physical cores and all 
the CPU versions are configured to spawn at most 16 
threads. To accurately measure power and energy 
consumption of CPU-based frameworks, we also measure 
and report the DRAM power data.  

As can be seen from Figure 4, the average power 
consumption of different CPU-based frameworks varies from 
103w to 188w. Compared to CPU, DRAM consumes a 
relatively small portion of energy (11%). Among these CPU 
versions, Caffe-OpenMP is the most energy-efficient and 
consumes 2.9 Joules per image processed. It is worth noting 
that while Caffe-OpenMP is more energy efficient than other 
CPU implementations, it consumes over twice the amount of 
energy than all considered GPU frameworks. We can 
conclude that CPUs are generally less energy-efficient than 
the GPUs for training CNNs.  

V. EFFECT OF NN AND BATCH SIZE CONFIGURATION  

A.  NN Structure  
In this section, we focus on the impact of the network’s 
structure on energy efficiency. To this end, we disassemble 
AlexNet and OverFeat into four types of layers 
(convolutional, pooling, fully connected, and ReLU) and 
measure the distribution of the energy consumption across 
these layers. In order to ensure that our approach is accurate, 
we verified that the cumulative energy consumption results 
from all layers are coherent with the measurements on the 

integrated network. In Figure 5 we show the percentage 
breakdown of the energy consumption across layers on GPU 
and CPU using Caffe. As can be seen, convolutional layers 
are predominant and consume 87% of the total energy 
consumption. The second most power-hungry layers are fully 
connected layers, which account for 10% of the total energy 
consumption. Pooling layers and ReLU layers (which apply 
activation functions) account for less than 5% of the energy 
consumption. This trend is even more noticeable for 
OverFeat. In OverFeat, the convolutional layers have more 
filters (leading to a larger number of neurons) than in 
AlexNet. Although OverFeat has the same number of layers 
as AlexNet, its convolutional layers consume a larger portion 
of the energy, as high as 95%, 93% and 92% on K20m, Titan 
X and CPU, respectively. From this analysis we can 
conclude that, in order to optimize energy consumption of 
deep CNNs, the priority should be on improving the energy 
efficiency of the convolutional layers.   

B. Batch Size 
The batch size is an important setting when training a neural 
network. Larger batch sizes lead to more images being 
packed into a batch and sent to the network for training in a 
single iteration. Intuitively, larger batches allow more data-
level parallelism. However, loading a larger batch requires 
more memory to store the data, possibly exhausting the 
limited GPU memory. 

Figure 6 reports the power and energy consumption of 
AlexNet on K20, Titan X and CPU when the batch size 
varies from 8 to 256. On all three hardware platforms, 
increasing the batch size leads to linear growth in power. 
Small batch sizes (e.g., 8 or 16) cause CPU and GPU  under-
utilization. An increase in the batch size will yield higher 
hardware utilization, and, consequently, an increase in power 
consumption. However, as can be seen, increasing the batch 
size can reduce the energy consumption per image. For 
instance, when the batch size is increased from 8 to 16, the 
energy consumption per image is reduced by 13%, 18% and 
31% on K20, Titan X and CPU, respectively. When the 
hardware utilization saturates, however, a further increase in 
the batch size does not further improve energy consumption. 
For example, when increasing the batch size from 128 to 
256, the energy consumption per image reduces only by 4% 

 
Fig. 4. Comparison among CNN frameworks on CPU. 

 
Fig. 5. Breakdown of energy consumption of AlexNet and OverFeat 
on K20, Titan X and CPU using Caffe. 



on K20 and by 7% on CPU, while Titan X does not benefit 
from large batch sizes.  

VI. EFFECT OF HARDWARE SETTINGS 
In this section, we analyze the impact of different hardware 
settings on power and energy consumption. Specifically, we 
investigate how the use of Hyper-Threading on CPU and the 
use of ECC and DVFS on GPU affect the performance, 
power and energy consumption of CNNs.  

A. Hyper-Threading 
Hyper-Threading (HT) is a technology introduced by Intel in 
order to improve the performance obtainable through 
parallelization. With HT enabled, the operating system treats 
each physical processor as two logical cores. HT can 
improve the performance of memory/IO intensive 
applications by hiding their latencies, but it often degrades 
the performance of compute intensive workloads. To 
evaluate the impact of HT on deep learning frameworks, we 
conducted experiments with HT enabled/disabled, in each 
case configuring the number of threads to equal the number 
of logical cores. Because our machine has sixteen physical 
cores, when HT is enabled we set the application to spawn 
thirty-two threads.  

Figure 7 shows the results reported on Caffe and its 
derivatives. CPU and DRAM energies are stacked into one 
bar named HT-E-XXX or HT-D-XXX. In the former case, HT 
is enabled; in the latter case, HT is disabled. The y-axis on 
the left side shows the energy consumption per image. The 
lines represent the power curves of CPU and DRAM and the 
power scale is on the y-axis on the right side. The values on 
the bars indicate the total execution time of each setting. 
Although different libraries and implementations experience 
different power consumptions, the power consumption is not 
significantly affected by HT. However, HT affects the 
execution time and, consequently, the energy consumption. 
As can be seen, while MKL reports a slight benefit from 
enabling HT (5% speedup and 4.8% energy saving), 
OpenBLAS, OpenMP, CaffeConTroll all suffer various 
degrees of performance degradation and consume more 
energy when HT is enabled. In the worst case (Caffe with 
OpenBLAS), enabling HT leads to an increase in execution 
time and energy consumption by 45% and 42%, respectively. 
This experiment shows that performance and energy 

efficiency of neural network training are generally negatively 
affected by HT, since this application saturates the hardware 
with computation and does not experience benefits from 
memory latency hiding.  

B. ECC 
Nowadays Error Correction Code RAM is the standard 
configuration for high performance computing clusters. With 
ECC enabled, RAM can detect and correct single bit errors. 
This feature is also available on high-end GPUs, like the 
ones used in this study. 

Although enabling ECC can reduce errors, this feature 
does not come for free. When ECC is enabled, some bits are 
reserved, thus reducing the available memory footprint and 
bandwidth. In addition, enabling ECC causes applications to 
suffer from more expensive synchronization and uncoalesced 
memory accesses [31].  

We have tested the use of ECC on K20m using Caffe 
along with the cuDNN library. Our experiments show no 
significant changes in performance and energy efficiency 
when ECC is enabled. This is because CNN training does not 
require synchronization operations and present relatively 
regular and coalesced memory access patterns. However, we 
have observed that enabling ECC leads to a 6.2% increase in 
memory utilization. Since deep CNN applications typically 
do not require bit-level accuracy and can tolerate random 
errors, for these applications disabling ECC can be beneficial 
in that it allows a better utilization of the limited memory 
capacity of the GPU. We note that modern GPUs have from 
1 to 12 GB of device memory, while CPUs are typically 
equipped with 16GB up to 1 TB RAM.  

C. DVFS 
Dynamic Voltage and Frequency Scaling (DVFS) is an 
advanced power-saving technology that aims to lower a 
component’s power state while still meeting the performance 
requirement of the workload [32]. Both Titan X and K20m 
GPUs support DVFS with various clock frequencies. On 
these devices, DVFS can control two clock frequencies: 
memory frequency and core frequency. Nvidia provides the 
nvidia-smi utility and the Nvidia Management Library 
(NVML) to control these frequencies. 

 
Fig. 7. Experimental results with different Hyper-Threading settings. 
HT-E-XXX indicates that HT is enabled, while HT-D-XXX indicates 
that HT is disabled. The experiments are conducted on Caffe. 

 
Fig. 6. Power (W) and energy consumption (Joule/Image) on K20m, 
Titan X and CPU with different batch sizes using Caffe. 



Table 1 shows the clock frequencies supported on K20m 
for GPU cores and memory. When the memory frequency is 
set to 324MHz, the only core frequency is 324Hz. Titan X 
support wider range of core and memory frequencies. Due to 
space limits, in this paper we only report results K20m. 

Figure 8 shows the power, energy and performance 
results obtained when applying different memory and core 
frequencies to CNN training. In the experiments, the batch 
size is varied from 16 to 128. As expected, power 
consumption increases with the operation frequency. In the 
experiments, the power consumption varies from 44w at 
324/324 MHz frequencies to 118w at 758/2600 MHz 
frequencies. This wide range of power consumption degrees 
shows that frequency scaling is an effective method that can 
be leveraged to meet power cap requirements. 

For energy-consumption, our experiments show a 
“valley” trend: the energy-consumption is relatively high at 
both the lowest and highest frequencies, and is relatively low 
at intermediate frequencies. This is because low frequency 
leads to low power consumption at the cost of longer 
execution time, negatively affecting the total energy 
consumption. Conversely, increasing frequency beyond a 
certain level increases the power consumption while 
providing only a limited return on performance, also leading 
to energy inefficiency. This “energy-valley” trend indicates 
that training deep neural networks in an energy-aware 
fashion requires operating at frequencies that allow a good 
trade-off between execution time and power consumption.  

VII. RELATED WORK  
With the emergence of powerful GPUs and the availability 
of large data sets for training, we have witnessed a 
significant improvement of deep CNNs in terms of training 
time and accuracy. The Visual Geometry Group (VGG) at 
University of Oxford has designed a 16- and a 19-layer 
model with a 7.4% and a 7.3% top-5 error rate, respectively 
[8]. Microsoft has recently proposed a NN model with 152 
layers – 8x deeper than the VGG nets – reporting a 3.57 % 
error rate [11]. This fast development has led to the 
proliferation of applications based on NNs. Examples of 
emerging applications based on NNs include: auto tagging 
[33], the estimation of a person’s pose [34], and the 
generation of a descriptive sentence from an image [35]. 
While previous work has focused on performance, our paper 

focuses on evaluating the energy efficiency of deep neural 
networks on CPUs and GPUs. 

Although the mainstream approach for training deep 
convolutional neural networks is using CPUs and GPUs, 
researchers have recently started to explore the use of other 
architectures and devices, including FPGA [36], RRAM 
[37], neuromorphic processors [38] and Tetra-Parallel 
architecture [39]. These hardware implementations are 
specifically tailored to convolutional neural networks and 
yield impressive results in terms of performance and energy 
efficiency. However, these hardware innovations are still at 
an early stage and it is urgent to understand the power and 
energy behavior of commonly used neural network 
frameworks on CPU and GPU – the main goal of our paper. 

In spite of the advancement in the development of deeper 
and more complicated neural network structures, research on 
investigating the energy behavior of different neural 
networks and software frameworks is still in its infancy. In 
its white paper [25], Nvidia provides limited power and 
energy consumption results for CNN inference on two 
frameworks. Our paper distinguishes itself by providing a 
comprehensive study on the energy-efficiency of deep neural 
network training that covers different frameworks, different 
platforms and different hardware settings.  

VIII. CONCOLUSION 
In this paper, we have conducted a comprehensive evaluation 
of the energy efficiency of deep CNN training frameworks. 
We have performed experiments using several popular DNN 
frameworks and libraries. Our evaluation considers both 
CPU and GPU. Besides showing network-wide results, we 
have studied how the network topology and the batch size 
affect power and energy consumption. In this process, we 
have identified the power-hungry layers of two ImageNet-
winner neural networks. Finally, we have explored the 
impact of several CPU and GPU hardware settings (i.e. HT, 
ECC and DVFS) on performance and energy efficiency of 
CNNs. Our results can be used for designing energy-efficient 
deep CNN frameworks and neural network architectures. 
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Fig. 8. Power and energy consumption using different memory and 
core frequencies. The batch size is varied from 16 to 128. The numbers 
on the bars are values of execution time per iteration. 

TABLE I. MEMORY AND CORE FREQUENCIES SUPPORTED ON K20M 
GPU  

Memory Frequency (MHz) GPU Core Frequency (MHz) 

2600 

758 

705 

666 

640 

614 

324 324 
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