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ABSTRACT 
Graphics Processing Units (GPUs) have been used in general 
purpose computing for several years. The newly introduced 
Dynamic Parallelism feature of Nvidia's Kepler GPUs allows 
launching kernels from the GPU directly. However, the naïve use 
of this feature can cause a high number of nested kernel launches, 
each performing limited work, leading to GPU underutilization 
and poor performance. We propose workload consolidation 
mechanisms at different granularities to maximize the work 
performed by nested kernels and reduce their overhead. Our end 
goal is to design automatic code transformation techniques for 
applications with irregular nested loops. 

Categories and Subject Descriptors 
D.1.3 [Concurrent Programming]: Parallel Programming 

General Terms 
Algorithms, Performance 
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1. MOTIVATION 
Irregular nested loops – illustrated in Figure 1(a) – exhibit the 
following property: the number of iterations of inner loops varies 
across the iterations of the outer loop. Figure 1(b) shows the 
pseudo code of a simple parallelization template that maps 
iterations of the outer loop onto different threads, such that each 
thread performs a different amount of work (i.e., different threads 
are assigned differently sized inner loops). It is well-known that, 
on Nvidia GPUs, threads are grouped into SIMT units called 
warps. Within each warp, the thread with the longest execution 
path is the execution bottleneck. Therefore, the uneven  workload 
distribution across GPU threads shown in Figure 1(b) will lead to 
hardware underutilization and hurt the performance.  

Dynamic Parallelism provides a mechanism to improve the 
mapping of irregular nested loops onto GPUs. As shown in Figure 
1(c), load balancing of uneven workloads can be achieved by 
invoking nested kernels. Specifically, a thread will check the 
amount of work it needs to perform (i.e., the number of iterations 
of the inner loop assigned to it), and it will then determine 
whether to process such workload or defer its execution to a child 

kernel. Hence, large inner loops are executed by nested kernels, 
which can consist of a dynamic, potentially large number of 
threads. However, launching nested kernels is not free. This naïve 
solution might result in a large number of small nested kernel 
invocations, thus incurring a significant overhead. Our 
experiments show that, on irregular nested loops with very uneven 
work distributions, the code of Figure 1(c) can underperform that 
of Figure 1(b) by a significant factor (even in the order of 100x).  

2. METHODOLOGY 
The problem of this naïve solution is that it spawns child kernels 
at the thread level, leading to a large number of potentially small 
nested kernel invocations. To efficiently use Dynamic 
Parallelism, we propose a mechanism to consolidate workloads 
across multiple threads and thereby reduce the number of child 
kernel launches – Figure 1(d). The basic idea is to hold  
workloads corresponding to large inner loops in a consolidation 
buffer and defer their handling to one or several relatively large 
child kernels (child_kernel_cons()). Based on the software 
hierarchy of GPUs, we can perform workload consolidation at 
three granularities: warp-level (consolidate workloads among 
threads within the same warp), block-level (consolidate workloads 
among threads within the same thread-block) and grid-level 
(consolidate workloads in the whole kernel). These mechanisms 
have pros and cons in the following aspects: (1) synchronization 
granularity; (2) load balancing granularity; (3) memory access 
patterns. We plan to study these trade-offs in depth. 

3. EXPERIMENTS 
To evaluate their performance, we implemented the proposed 
consolidation mechanisms on two applications: Single Source 
Shortest Path (SSSP) and Sparse Matrix-Vector Multiplication 
(SpMV). We run our experiments on an Nvidia K20 GPU using a 
citation network consisting of 0.4 million vertices and 16 million 
edges.  Our preliminary results show that, on SSSP, the speedups 
over the basic non-DP implementation are 2.6x, 3.1x and 3.5x, for 
warp-, block-, and grid-level consolidation, respectively. On 
SpMV, these speedups vary from 1.4 to 2.1x. 
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(a) irregular nested loop (b) basic parallelization template
foreach (int i=1 to N) thread-mapped-loop(i) {
foreach (int j=1 to f[i]) for (int j=1 to f[i]) work(i,j);

work(i,j); }

(c) dynamic parallelism – naïve (d) dynamic parallelism with consolidation
thread-mapped-loop(i) { thread-mapped-loop(i) {
if (f[i] <lbTHRES) if (f[i] <lbTHRES)
for (int j=1 to f[i]) work(i,j); for (int j=1 to f[i]) work(i,j);

else child_kernel_naive(i); else buffer.add(i);
} }  

child_kernel_cons(buffer);  
Figure 1: Parallelization templates for irregular nested loops 


