
Exploiting Dynamic Parallelism to Efficiently Support
Irregular Nested Loops on GPUs

Da Li Hancheng Wu Michela Becchi
Department of Electrical and Computer Engineering

University of Missouri, Columbia, MO, USA
{da.li, hancheng.wu}@mail.missouri.edu, becchim@missouri.edu

ABSTRACT
Graphics Processing Units (GPUs) have been used in general
purpose computing for several years. The newly introduced
Dynamic Parallelism feature of Nvidia's Kepler GPUs allows
launching kernels from the GPU directly. However, the naïve use
of this feature can cause a high number of nested kernel launches,
each performing limited work, leading to GPU underutilization
and poor performance. We propose workload consolidation
mechanisms at different granularities to maximize the work
performed by nested kernels and reduce their overhead. Our end
goal is to design automatic code transformation techniques for
applications with irregular nested loops.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming

General Terms
Algorithms, Performance

Keywords
GPU, Dynamic Parallelism, Irregular Applications

1. MOTIVATION
Irregular nested loops – illustrated in Figure 1(a) – exhibit the
following property: the number of iterations of inner loops varies
across the iterations of the outer loop. Figure 1(b) shows the
pseudo code of a simple parallelization template that maps
iterations of the outer loop onto different threads, such that each
thread performs a different amount of work (i.e., different threads
are assigned differently sized inner loops). It is well-known that,
on Nvidia GPUs, threads are grouped into SIMT units called
warps. Within each warp, the thread with the longest execution
path is the execution bottleneck. Therefore, the uneven workload
distribution across GPU threads shown in Figure 1(b) will lead to
hardware underutilization and hurt the performance.

Dynamic Parallelism provides a mechanism to improve the
mapping of irregular nested loops onto GPUs. As shown in Figure
1(c), load balancing of uneven workloads can be achieved by
invoking nested kernels. Specifically, a thread will check the
amount of work it needs to perform (i.e., the number of iterations
of the inner loop assigned to it), and it will then determine
whether to process such workload or defer its execution to a child

kernel. Hence, large inner loops are executed by nested kernels,
which can consist of a dynamic, potentially large number of
threads. However, launching nested kernels is not free. This naïve
solution might result in a large number of small nested kernel
invocations, thus incurring a significant overhead. Our
experiments show that, on irregular nested loops with very uneven
work distributions, the code of Figure 1(c) can underperform that
of Figure 1(b) by a significant factor (even in the order of 100x).

2. METHODOLOGY
The problem of this naïve solution is that it spawns child kernels
at the thread level, leading to a large number of potentially small
nested kernel invocations. To efficiently use Dynamic
Parallelism, we propose a mechanism to consolidate workloads
across multiple threads and thereby reduce the number of child
kernel launches – Figure 1(d). The basic idea is to hold
workloads corresponding to large inner loops in a consolidation
buffer and defer their handling to one or several relatively large
child kernels (child_kernel_cons()). Based on the software
hierarchy of GPUs, we can perform workload consolidation at
three granularities: warp-level (consolidate workloads among
threads within the same warp), block-level (consolidate workloads
among threads within the same thread-block) and grid-level
(consolidate workloads in the whole kernel). These mechanisms
have pros and cons in the following aspects: (1) synchronization
granularity; (2) load balancing granularity; (3) memory access
patterns. We plan to study these trade-offs in depth.

3. EXPERIMENTS
To evaluate their performance, we implemented the proposed
consolidation mechanisms on two applications: Single Source
Shortest Path (SSSP) and Sparse Matrix-Vector Multiplication
(SpMV). We run our experiments on an Nvidia K20 GPU using a
citation network consisting of 0.4 million vertices and 16 million
edges. Our preliminary results show that, on SSSP, the speedups
over the basic non-DP implementation are 2.6x, 3.1x and 3.5x, for
warp-, block-, and grid-level consolidation, respectively. On
SpMV, these speedups vary from 1.4 to 2.1x.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other users,
contact the Owner/Author.
Copyright is held by the owner/author(s).
COSMIC’15, Feb 08-08, 2015, San Francisco Bay Area, CA, USA
ACM 978-1-4503-3316-0/15/02.
http://dx.doi.org/10.1145/2723772.2723780

(a) irregular nested loop (b) basic parallelization template
foreach (int i=1 to N) thread-mapped-loop(i) {
foreach (int j=1 to f[i]) for (int j=1 to f[i]) work(i,j);

work(i,j); }

(c) dynamic parallelism – naïve (d) dynamic parallelism with consolidation
thread-mapped-loop(i) { thread-mapped-loop(i) {
if (f[i] <lbTHRES) if (f[i] <lbTHRES)
for (int j=1 to f[i]) work(i,j); for (int j=1 to f[i]) work(i,j);

else child_kernel_naive(i); else buffer.add(i);
} }

child_kernel_cons(buffer);
Figure 1: Parallelization templates for irregular nested loops

