
1 
 

 Deploying Graph Algorithms on GPUs: an Adaptive Solution 
 

Da Li 
Dept. of Electrical and Computer Engineering 

University of Missouri - Columbia 
dlx7f@mail.missouri.edu 

Michela Becchi 
Dept. of Electrical and Computer Engineering 

University of Missouri - Columbia 
becchim@missouri.edu

 
Abstract—Thanks to their massive computational power and 
their SIMT computational model, Graphics Processing Units 
(GPUs) have been successfully used to accelerate a wide variety 
of regular applications (linear algebra, stencil computations, 
image processing and bioinformatics algorithms, among 
others). However, many established and emerging problems 
are based on irregular data structures, such as graphs. 
Examples can be drawn from different application domains: 
networking, social networking, machine learning, electrical 
circuit modeling, discrete event simulation, compilers, and 
computational sciences. It has been shown that irregular 
applications based on large graphs do exhibit runtime 
parallelism; moreover, the amount of available parallelism 
tends to increase with the size of the datasets. 

In this work, we explore an implementation space for 
deploying a variety of graph algorithms on GPUs. We show 
that the dynamic nature of the parallelism that can be 
extracted from graph algorithms makes it impossible to find an 
optimal solution. We propose a runtime system able to 
dynamically transition between different implementations with 
minimal overhead, and investigate heuristic decisions 
applicable across algorithms and datasets. Our evaluation is 
performed on two graph algorithms: breadth-first search and 
single-source shortest paths. We believe that our proposed 
mechanisms can be extended and applied to other graph 
algorithms that exhibit similar computational patterns. 

I. INTRODUCTION  
Graphs are a powerful representation used in many practical 
applications (e.g., networking, social networking, online 
marketing, webpage search, citation networks, among 
others). Recent work [1-3] has shown that, even if graph 
algorithms are intrinsically irregular, they exhibit a high 
amount of runtime parallelism, which is data dependent. In 
the past decades, the size of real world datasets has rapidly 
increased, thus exposing higher amount of parallelism. 

Because of the practical relevance of these data 
structures, several efforts have proposed parallel graph 
libraries (e.g. Parallel BGL [4], ParGraph [5] and STAPL 
[6]) as well as programming models and runtime systems 
(e.g. Galois system [1-3]) to enable the effective deployment 
of graph algorithms on multi-core CPUs. More recently, 
there has been a rich body of work targeting the deployment 
of graph algorithms on GPUs [7-13], traditionally used to 
accelerate regular applications [14, 15]. Most of these 
proposals aim to provide highly optimized implementations 
of specific graph algorithms. 

It has been shown that graphs used in real-world 
applications [16-18] exhibit significant topological 
differences. The topology of the graphs dictates the amount 

of parallelism that can be extracted at runtime, thus affecting 
the performance of specific GPU implementations. This 
heterogeneity makes it difficult to design a GPU 
implementation of a graph algorithm that is optimal on a 
large variety of datasets. In this work, we argue for an 
adaptive solution that takes into account the topological 
characteristics of the dataset to dynamically select the most 
suitable alternative among a set of available GPU 
implementations. 

 Our contributions can be summarized as follows. 
• We explore an implementation space for graph 

algorithms on GPU. The considered space is 
characterized by the following dimensions: (i) kind of 
algorithm (i.e., ordered vs. unordered), (ii) mapping 
granularity (i.e., thread-mapping vs. block-mapping), 
and (iii) working set implementation (i.e., bitmask vs. 
work queue). Our analysis shows that there is no optimal 
solution across graph problems and datasets. 

• We propose an adaptive runtime that dynamically 
selects the most suitable implementation among the ones 
resulting from the aforementioned exploration space. 
We design data structures that lead to minimal overhead 
when switching between implementations at runtime. 
We devise heuristics that guide the decisions of our 
adaptive runtime. 

• We evaluate the described static and dynamic solutions 
on a variety of real world datasets, and show that our 
dynamic solution outperforms the best static one (up to a 
factor of 2X) on most datasets, and is more robust to the 
irregularities typical of real world graphs. 

Our evaluation is limited to two graph problems: breadth-
first search (BFS) and single-source shortest paths (SSSP). 
However, we believe that our analysis can be extended to 
many other graph algorithms, which can be expressed as a 
sequence of iterative steps, each step processing a (ordered 
or unordered) set of elements (i.e., nodes or edges). 

II. RELATED WORK 
Recent work [4-6] has proposed parallel graph libraries for 
multi-core processors and distributed systems. Parallel BGL 
[4] and ParGraph [5] are extensible parallel libraries. Parallel 
BGL provides a generic interface to graph structures, a set of 
core algorithm patterns (breadth-first, depth-first and 
uniform-cost search), and a set of concrete graph algorithms 
(shortest paths, minimum spanning tree, and connected 
components algorithms, among others). STAPL [6] is an 
extension to the ANSI C++ Standard Template Library that 
provides a collection of thread-safe distributed data 
structures, including graphs. Differently from Parallel BGL, 



2 
 

which is static and makes parallelization decisions at compile 
time, STAPL has a runtime system that dynamically selects 
among different algorithm implementations of the same 
library routine. Our proposal targets GPUs. Similarly to 
Parallel BGL, we provide to the user a graph API including 
some algorithm patterns that can be reused in the context of 
more complex applications. However, like STAPL, our 
library is coupled with a runtime system that can 
dynamically adapt to the characteristics of the data and to the 
underlying hardware. 

The Galois system [1-3] offers a programming model and 
a runtime system to dynamically extract parallelism from 
irregular applications, and is based on the following 
consideration: the parallelism present in irregular algorithms 
is mostly data dependent, and cannot be discovered by static 
analysis at compile time; however, such parallelism can be 
exploited at runtime. Specifically, the authors use optimistic 
(or speculative) parallelization to dynamically expose 
parallelism. The Galois system consists of two main 
components: a programming model and a runtime system. 
The former includes an ordered and an unordered set iterator, 
that allow constructing do-across and do-all loops, and can 
be used by the programmer to represent irregular algorithms 
in a sequential fashion. Using this programming model, 
graph algorithms are represented iteratively: in each 
iteration, a simple or complex operator is applied to the 
neighborhood of an active element (e.g., a node or an edge).  
The runtime system schedules iterations to different 
execution threads concurrently, enables their speculative 
execution, and recovers from potentially unsafe accesses to 
shared memory due to speculation. In this work, we view 
graph algorithms such as BFS and SSSP iteratively similarly 
to what done in the Galois’s programming model. However, 
we do not consider speculative execution. 

There has been a rich body of work on the design of 
parallel algorithms to solve various graph problems (e.g., 
breadth-first search [19-21], shortest paths [22, 23], 
minimum spanning trees [24-26], connected components 
[27-30]). In this work, we consider a serial implementation 
of BFS and SSSP, and use the parallelism inherent in the 
working set to efficiently deploy these algorithms on GPUs. 

A few proposals [7-13] have accelerated graph 
algorithms on GPU. Harish and Narayanan [7] were the first 
to perform this operation; their proposed implementations, 
however, are pretty basic and ineffective on sparse graphs 
used in practice. Better results have been reported through 
subsequent efforts, which focused on specific algorithms 
(breadth-first search [8, 9, 13], inclusion-based points-to 
analysis [10], strongly connected components [11]). The 
optimizations introduced by these proposals are somehow 
orthogonal to this work, and can be integrated with it. 
Because of their higher generality, the proposals closest to 
ours are those by  Hong et al [12, 13]. [12] proposes a virtual 
warp-centric programming model to allow datasets with 
different characteristics to more efficiently use the GPU 
hardware. This idea can be integrated with our work. [13] 
considers an adaptive solution that alternates CPU and GPU 
execution. We, on the other hand, focus on the automatic 
selection of different GPU solutions and on the conditions 

that make this beneficial.  

III. MOTIVATION 
In this section, we present some motivating facts that show 
the potential of GPUs as accelerators of graph algorithms 
and give an intuition of why a dynamic solution can be 
preferable to a static one. First, we characterize some graph 
datasets used in real-world applications. Second, we 
introduce the main architectural features of modern GPUs, 
and discuss their suitability to the deployment of graph 
algorithms. 

A. Characterization of Graph Datasets 
Graphs are a powerful representation used in many practical 
applications, where the relationships among the nodes in 
some network are relevant. Some examples drawn from 
different application domains are: the road network, the web 
link network and the social network. The road network is 
typically extracted from GPS maps and used to calculate the 
optimal route (or shortest path) between two endpoints. The 
web link network contains links between web pages, and its 
connectivity is typically used by search algorithms to rank 
the results of queries. The social network contains 
relationships between individuals, and is used to compute a 
variety of connectivity properties (in applications like 
Facebook, for instance, such relationships are used to suggest 
new friends). 

In this paper, we use graphs from the 9th and the 10th 
DIMACS implementation challenges [16, 17] and from the 
Stanford Large Data Collection [18]. In particular, we 
consider datasets used in different application domains: the 
Colorado road network [16], a paper co-citation network 
(from the CiteSeer library) [17], a p2p networking network 
[18], the Amazon co-purchase network [18], the Google 
webpage link network [18] and a SNS network (from Live-
Journal) [18]. All but the road network and the paper co-
citation network are directed graphs. Table 1 shows a 
characterization of these datasets, in terms of total number of 
nodes, total number of edges and node degree (that is, 
number of edges per node). We observe the following facts. 
• The graph size varies considerably across the datasets: 

from the small p2p network (with about 36.6 K nodes 
and 183.8 K edges) to the large SNS network (with 
about 4.3 M nodes and 34.5 M edges). 

• The average node outdegree also varies considerably: 
from 2.4 in the CO-road network, to 73.9 in the 
CiteSeer network. Four networks (CiteSeer, p2p, Google 

Table 1: Dataset characterization. 

Network # Nodes # Edges 
Node Outdegree 

min max avg 

CO-road 435,666 ~1 M 1 8 2.4 
CiteSeer 434,102 ~16 M 1 1,188 73.9 

p2p  36,692 ~0.18 M 0 1,383 10.0 
Amazon 396,803 ~1.7M 0 10 8.4 
Google  739,454 ~2.5 M 0 456 6.9 

SNS 4,308,452 ~34.5 M 0 20,293 16.0 
 



3 
 

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5 6 7 8

%
  n

od
es

out-degree

CO-road

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10

%
	
  	
  n
od

es

out-­‐degree

Amazon

0%

1%

1%

2%

2%

3%

1 81 161 241 321 401 481 562 665 764 875

%
  n

od
es

out-degree

CiteSeer

 
Figure 1: Outdegree distributions of CO-road, Amazon and CiteSeer networks. 

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

1 151 301 451 601 751 901 1051 1201 1351 1501 1651

W
or
ki
ng
	
  se

t	
  s
ize

(k
	
  n
od

es
)

Iteration

CO-road

0	
  
20	
  
40	
  
60	
  
80	
  

100	
  
120	
  
140	
  
160	
  
180	
  

1 5 9 13 17 21 25 29 33 37 41 45 49 53

W
or

ki
ng

 se
t s

iz
e(

k 
no

de
s)

Iteration

Amazon

0	
  
500	
  
1000	
  
1500	
  
2000	
  
2500	
  
3000	
  
3500	
  
4000	
  
4500	
  

1 4 7 10 13 16 19 22 25 28 31 34 37

W
or

ki
ng

 se
t s

iz
e(

k 
no

de
s)

Iteration

SNS

 
Figure 2: Unordered SSSP – size of the working set during the execution (CO-road, Amazon and SNS networks). 

and SNS) exhibit a considerable outdegree variance, 
leading to large outdegree values. The other networks 
(CO-road and Amazon) have a more regular structure. 

Figure 1 shows the outdegree distribution of the CO-road, 
the Amazon and the CiteSeer network. As can be seen, these 
networks exhibit different characteristics. The CO-road 
graph is pretty sparse: most of its nodes have an outdegree 
from 1 to 4, and the maximum outdegree is 8.  This is 
because most towns are usually directly connected to a 
handful of other towns, whereas few bigger cities serving as 
transportation hubs have as many as 7-8 intercity roads. The 
Amazon network is very regular: 70% of the nodes have 10 
outgoing edges, and the remaining nodes have an outdegree 
uniformly distributed between 1 and 9. The CiteSeer network 
is far less regular: about 90% of the nodes have less than 200 
outgoing edges. On the other hand, the outdegree range is 
very wide for the remaining nodes (up to 1,188). The 
outdegree distribution of the p2p, the Google and the SNS 
networks is similar to that of the CiteSeer graph.  

This fact has a practical significance. Most graph 
algorithms proceed iteratively. In each iteration, they visit 
the local neighborhood of a working set consisting of nodes 
or edges, remove elements from the set and add new 
elements to it. Intuitively, large outdegree lead to large 
working sets, and thus to potentially high amounts of 
parallelism. However, unbalanced outdegree distributions 
can cause work imbalances during graph traversals. An 
adaptive solution may therefore better support a wide variety 
of graphs, including those with irregular topologies. 

B. Imbalanced Work of Graph Algorithms 
In this work, we focus on breadth-first search (BFS) and 
single-source shortest path (SSSP), two fundamental graph 
problems. BFS computes the depth of each node n, that is, 
the minimum number of nodes visited when moving from a 
given source node to n. SSSP computes the minimum cost 
paths from a given source node to any other node in the 
graph. These problems are solved through an iterative graph 
traversal. Initially, the working set consists of the source 

node. In each traversal step the local neighborhood of the 
working set is processed. The traversal terminates when the 
working set becomes empty. During execution, two kinds of 
work imbalance can take place. 
• Inter-iteration work imbalance - The size of the working 

set typically changes from iteration to iteration. For 
example, Figure 2 shows how the size of the working set 
varies during the execution of SSSP on three datasets 
(CO-road, Amazon and SNS). As can be seen, the work 
is generally limited at initial stages, when the traversal is 
restricted to the neighborhood of the source node. When 
enough nodes have been processed, the working set 
starts growing and keeps growing until a large fraction 
of the nodes have been visited. At that point, the 
working set starts shrinking. The working set size and 
the convergence speed depend on the specific algorithm 
and on the characteristics of the dataset. For instance, on 
the datasets of Figure 2, BFS has working set sizes from 
2 to 20 times smaller than those reported by SSSP.  

• Intra-iteration work imbalance - Different nodes can 
have different outdegrees. As a consequence, each node 
in the working set can be potentially associated with a 
different amount of work. This fact affects the 
performance of the GPU design. For example, if a node-
to-thread mapping is adopted on a graph with an 
irregular topology, thread divergence may arise during 
execution, and the performance will be limited by the 
node with the largest outdegree. 

C. Architectural pros & cons of GPUs 
GPUs are known for the massive hardware parallelism that 
they offer. NVIDIA GPUs consist of several SIMT 
processors, called Streaming Multiprocessors (SMs), each 
containing a set of in-order CUDA cores. In the Fermi 
architecture, each SM comprises either 32 or 48 cores 
(depending on the compute capability of the device). The 
CUDA programming model [31] facilitates writing parallel 
algorithms for GPUs. In CUDA, the computation is 
organized in a hierarchical fashion: threads are grouped into 



4 
 

thread-blocks; at runtime, each thread is mapped onto a core 
and each thread-block is mapped onto a SM. In CUDA 4, as 
many as 64K*64K*64K blocks with at most 1,024 threads 
each are allowed. This parallelism can clearly be 
advantageous for graph applications that operate on large 
datasets consisting of millions of nodes and edges. 

Another characteristic of the GPU architecture is its 
memory hierarchy. GPUs are equipped with a relatively 
large off-chip, high-latency, read-write global memory; a 
smaller low-latency, read-only constant memory (which is 
off-chip but cached); and a limited on-chip, low-latency, 
read-write shared memory. The global memory can be 
accessed via 32-, 64- or 128-byte transactions and has a high 
access bandwidth (up to 144 GB/sec). Multiple memory 
accesses to contiguous memory locations are automatically 
coalesced into a single memory transaction, thus saving 
memory bandwidth. The graph algorithms in consideration 
are not computation intensive, but – especially when running 
on large datasets - can be memory bound. In fact, when 
processing hundreds of nodes in parallel, it is necessary to 
access their neighbors in an efficient way.  The GPU high 
memory bandwidth can be beneficial for these memory 
intensive applications. 

Two GPU architectural features are particularly 
problematic when deploying graph algorithms on GPUs. 
First, SMs are SIMT-processor. During execution, threads 
are grouped into 32-element SIMT units, called warps. In 
every clock cycle, threads belonging to the same warp must 
execute the same instruction. Branches are allowed through 
the use of hardware masking. In the presence of branch 
divergence within a warp, both paths of the control flow 
operation are in principle executed by all CUDA cores. 
Therefore, the presence of branch divergence within a warp 
leads to core underutilization. Unfortunately, the irregular 
nature of graph algorithms leads to relatively frequent branch 
operations. Second, to fully utilize its high memory 
bandwidth, the GPU requires regular memory access patterns. 
In fact, contiguous memory accesses can be coalesced into 
few memory transactions when accessing global memory, 
and allow avoiding bank conflicts when accessing shared 
memory. However, the memory access patterns within graph 
algorithms are often irregular and hard to predict. Even if 
this effect can be limited by representing graphs with ad-hoc 
data structures (e.g. adjacency matrices in compressed sparse 
row form), unpredictable and irregular memory accesses 
cannot be fully avoided. 

IV. EXPLORATION SPACE 
In this section, we present and discuss a possible exploration 
space for implementing graph algorithms on GPU. Our study 
focuses on the BFS and SSSP problems. However, we 
believe that our analysis can be extended to other amorphous 
graph algorithms with similar computational patterns. We 
consider a 3-dimensional exploration space (Figure 3), which 
is built according to the following questions. 
• Is the working set used by the algorithm ordered or 

unordered?  
• What is the granularity of the mapping of the work to 

the GPU hardware? Two obvious alternatives consist of 
mapping each element of the working set to a thread 
(fine-grained mapping) or to a thread-block (coarse-
grained mapping). 

• How is the working set implemented? We will consider 
a bitmap-based and a queue-based implementation. 

A. Ordered vs. unordered algorithms 
In this paper, we consider the distinction between unordered 
and ordered graph algorithms introduced by Hassaan et al [3]. 
The basic idea is the following. Most graph algorithms 
operate iteratively over a working set consisting of nodes or 
edges; in unordered graph algorithms, the elements can be 
extracted from the working set and processed in any order; 
conversely, in ordered algorithms, an ordering relation over 
the working set imposes a constraint on the processing 
sequence of the elements in it.  

Figure 4 shows the pseudo-code of an ordered and an 
unordered BFS algorithm, which compute the level (or depth) 
of the nodes in a graph. The two algorithms differ in the 
nature of the working set (ordered vs. unordered, 
respectively) and in instruction 8. The ordered version 
processes each node exactly once, and adds it to the working 
set the first time it is visited (that is, when its level is 
undefined). The unordered algorithm may add the same node 
to the working set multiple times, as long as its level 
decreases when the node is visited. The ordered version 
clearly terminates when all nodes have been processed. Since 
the node level is a monotonically decreasing function, the 
unordered version is also guaranteed to terminate.  

algorithm

mapping

working	
  set

unordered ordered

fine-­‐grained
(working	
  elements-­‐threads)

coarse-­‐grained
(working	
  elements-­‐blocks)

bitmap

queue

 
Figure 3: Exploration space. 

1. Graph g;
2. WorkingSet ws;
3. g.root.level = 0;
4. ws.add(g.root);
5. foreach(Node n:ws){
6. int level = n.level + 1;
7. for (Node m: g.neighbors(n)){
8’. if (m.level == INF){ //ORDERED VERSION
8”. if (m.level > level){ //UNORDERED VERSION
9. m.level = level;
10. ws.add(m);
11. } } }

 
Figure 4: Ordered and unordered BFS algorithms. In the 
ordered version the working set ws is ordered by level. 
Instructions 8’ and 8” belong to the ordered and unordered 
version, respectively. 



5 
 

Figure 5 shows the pseudo-code of an ordered and an 
unordered SSSP algorithm (Dijkstra and Bellman-Ford [32], 
respectively). In the ordered algorithm, the working set is 
ordered by distance, and the distance of each node is updated 
only once. In the unordered version, such attribute may be 
updated multiple times (as long as its value decreases). The 
ordered algorithm terminates when all node distances have 
been set. Since the distance is a monotonically decreasing 
function, the unordered algorithm is also guaranteed to 
terminate. Note that, in the ordered version, the same node 
can appear multiple times in the working set with different 
weight values. However, the ordered nature of the working 
set ensures that the node distance is updated only once with 
the minimum weight value. 

In general, ordered algorithms are more work efficient 
than their unordered counterparts (in that they process each 
element a minimum number of times), but take more 
iterations to converge. However, unordered algorithms may 
exhibit higher degrees of parallelism. In fact, unordered 
algorithms can process all the nodes in the working set at the 
same time, whereas ordered algorithms can process in 
parallel only elements that are equivalent in terms of the 
underlying order relation (in other words, at every iteration, 
ordered algorithms effectively process only a subset of the 
working set). Intuitively, ordered algorithms are better 
candidates for serial implementation, whereas unordered 
ones can be more suitable for parallel implementation. 

B. Coarse- vs. fine-grained mapping 
The second dimension of exploration has to do with the 
mapping granularity of the work to the GPU hardware. As 
mentioned, a graph algorithm can be expressed as a sequence 
of iterations over a working set. In each iteration, a subset of 
elements are extracted from the working set, they are 
processed (e.g., their depth level or their distance from a 
source node is computed), their neighborhood is queried, and 
possibly new elements are added to the working set for the 
next iteration. The per-element work consists on the node 
processing and on the visit to its neighborhood. In each 
iteration, the elements extracted from the working set can be 
processed in parallel. One question must be addressed: how 
to map the work of each node onto the GPU? 

Two basic mapping strategies can be devised: fine-
grained (or thread-based) and coarse-grained (or block-based) 
mapping. In thread-based mapping, each element in the 
working set is mapped to a GPU-thread; each thread 
processes such element and visits its neighbors. In block-
based mapping, each element in the working set is mapped to 
a thread-block. Different threads within the same block 
handle different neighbors of the element. Block-based 
mapping exhibits two levels of parallelism: (i) active 
elements are processed in parallel by different blocks, and (ii) 
neighbors are visited in parallel by different threads. 

These mapping strategies have advantages and 
disadvantages. Fine-grained mapping is suitable for graphs 
with a regular topology (that is, low outdegree variance 
across the nodes) and in case of large working sets. In fact, a 
large outdegree distribution may cause work imbalances 
across threads during the neighborhood visit, thus leading to 

thread divergence. In addition, small working sets may lead 
to idle cores. The two-level parallelism of coarse-grained 
mapping is naturally suited to the GPU hardware. However, 
in the presence of nodes with small outdegree (i.e., less than 
32 neighbors) this mapping strategy will keep some cores 
idle, thereby underutilizing the hardware. In addition, the 
GPU has a limited number of SMs. Therefore, block-based 
mapping is more suitable for dense graphs (i.e., graphs with 
high average outdegree) and for small working sets. Since 
the amount of per-node computation varies from application 
to application, block-based mapping may also be preferable 
when BFS and SSSP are building blocks of complex 
applications, and more work is associated to each element of 
the working set. In the pseudo-code in Figures 4 and 5, for 
example, if we exclude the neighborhood visit, the 
processing associated to each node is limited to setting the 
level/distance value. In more generic situations where 
additional work must be performed, block-based mapping 
brings an extra level of parallelism and allows distributing 
the work within the thread-block. 

Both strategies allow a one-to-one and a many-to-one 
element-to-thread/block assignment. In the case of thread-
based mapping, for example, each thread can be assigned 
either a single, or multiple elements of the working set. This 
choice affects the configuration of the kernel launches. In 
this work, we adopt a one-to-one mapping, which maximizes 
the number of threads (or thread-blocks) instantiated at every 
kernel call. We note that the thread- and block-based 
mappings are not the only options, and intermediate 
solutions can be devised. For example, when performing the 
neighborhood visit, nodes with a high outdegree can be split 
across multiple threads or thread–blocks. In this work, we 
limit ourselves to the two basic mapping strategies, and do 
not perform this form of load balancing.  

C. Working set: bitmap vs. queue 
The third dimension of exploration has to do with the 
working set representation. Previous work has adopted two 

1. Graph g; -- ORDERED VERSION
2. WorkingSet ows;
3. for (Node m: g.neighbors(g.root)){
4. ows.add(<m, g.edgeWeight(g.root,m)>);
5. }
6. foreach(Pair <n, d>: ows)
7. if (n.distance == INF)){
8. n.distance = d;
9. for (Node m: g.neighbors(n)){
10. if (m.distance == INF){
11. ows.add(<m, d + g.edgeWeight(n,m)>);
12. } } } }

1. Graph g; -- UNORDERED VERSION
2. WorkingSet ws;
3. ws.add(g.root);
4. foreach(Node n: ws){
5. for (Node m: g.neighbors(n)){
6. int d = n.distance + g.edgeWeight(n,m);
7. if (d < m.distance){
8. m.distance = d;
9. ws.add(m);
10. } } }  

Figure 5: Ordered and unordered SSSP. 



6 
 

Framework of BFS and SSSP  
1: Create data structures on CPU and GPU 
2: Initialize working set on CPU 
3: Transfer working set and support data from CPU to GPU 
4: while working set is not empty do 
5:     Invoke CUDA_computation kernel 
6:     Invoke CUDA_workingset_generation kernel 
7:end while 

Figure 8: Generic CPU pseudo-code for BFS and SSSP. 

 

representations: bitmap-based [7] and queue-based [9] 
working sets (Figure 6). The former consists of a 1-
dimension array of bits, each indicating whether the 
corresponding element is in the working set and must be 
processed in the current iteration. The latter consists of a 
queue containing the identifiers of the elements to be 
processed in the current iteration. Bitmaps are generally used 
in combination with thread-based mapping [7]. 

Both representations have advantages and disadvantages. 
The bitmap solution is simple to implement, update and 
access. In fact, it requires only a one-dimensional array of 
bits, and can be accessed with minimal synchronization. 
However, bitmaps are inefficient when sparse, that is, when 
the working set is small. This is especially true if the number 
of threads launched is equal to the number of elements in the 
graph (that is, nodes in case of BFS and SSSP). In this case, 
most threads will be idle, leading to high GPU 
underutilization. This inefficiency is avoided when 
representing the working set as a queue, which contains only 
elements that must be effectively processed, and can be 
efficiently accessed by contiguous threads. However, a 
queue is more difficult to implement and especially to update, 
since it requires more synchronization mechanisms. 

V. IMPLEMENTATION  
In this section, we discuss our implementation in details.  

A. Data Structures 
On both CPU and GPU, we store the graph in compressed 
sparse row (CSR) form, which is an efficient encoding 
scheme also adopted in previous work [7]. CSR represents 
the nodes and the edges in the graph through two one-
dimensional arrays, the node vector and the edge vector. The 
ith entry of the node vector contains an index to the edge 
vector. Specifically, such index points to the start of an 
adjacency list containing the neighbors of node i. The entries 
in the edge vector store node identifiers, which in turn can be 
used to index the node vector. The size of the node vector is 
equal to the number of nodes in the graph (+1); that of the 

edge vector is equal to the number of edges.  
An example is shown in Figure 7, which assumes that the 

nodes are numbered starting from 0. The neighbors of nodes 
2, for example, can be retrieved by first querying the node 
vector, and extracting the element at position 2 and its 
successor (that is, values 4 and 6, respectively). These values 
represent the starting and ending index of the neighbors of 
node 2 within the edge vector. As can be seen, the elements 
stored in the edge vector from position 4 to position 6 
(excluded) are 22 and 38. The node vector requires an extra 
element to point to the end of the edge vector.  

Besides the node and the edge vectors, BFS and SSSP 
require additional data structures, which we also represent in 
array form to allow for easy and efficient implementation. In 
particular, BFS and SSSP need an array to store the level and 
the distance information, respectively, which is node-
specific. In addition, SSSP requires an array to record the 
edges’ weights. Finally, some of our implementations require 
a node-specific update variable to indicate whether a node 
needs to be updated in the current iteration.  

B. Parallel Kernels 
Figure 8 shows the CPU implementation framework of BFS 
and SSSP. In the first three steps (lines 1-3), the data 
structures are created and initialized on both CPU and GPU, 
and the required data transfers are performed. The loop in 
lines 4-7 represents the graph traversal, which terminates 
when the working set becomes empty. Each loop iteration 
consists essentially of the invocation of two GPU kernels: 
CUDA_computation and CUDA_workset_gen. The former 
processes the elements in the working set, computes their 
level/distance value, and visits their neighborhood, adding 
the elements that should be processed in the next iteration to 
an update vector. Since multiple active nodes can have 
common neighbors, modifications to the update vector are 
performed through atomic operations (thus introducing some 
serializations). The CUDA_workset_gen kernel generates the 
working set by transforming the update vector to bitmap or 
queue form. The computation and the working set generation 
are split into two kernels because CUDA does not offer 
primitives for global synchronization inside kernels.   

The CUDA_computation kernel can be implemented 
according to all possible combinations of the alternatives in 
the exploration space of Figure 3. The ordered/unordered 
property determines which elements to extract from the 
working set and how to process them (Figure 4 and 5). The 
mapping strategy and the working set implementation affect 
how the work is distributed among threads and thread-blocks. 
The pseudo-code in Figure 9 summarizes the body of the two 

(a) 
. . .

1 0 0 1 1 1 0 0 0 0 1 0 . . .
 

(b) 

4 78 0 5 32 15 3 24 66 10 41 46  
Figure 6: Working set: (a) bitmap vs. (b) queue. 

0 3 4 6 12 15

13 65 71 8 22 38 24 0 43 52 18 33

35 41 44 51. . .

……

Node   vector

Edge   vector  
Figure 7: Compressed sparse row graph representation. 



7 
 

CUDA_computation kernel 
1’:  id = getThreadId()                                     // thread mapping 
1”:  id = getBlockId()                                       // block mapping 
2’:  if (id<nodeNumber && bitmap[id ])        // bitmap 
2”:  if (id<queue length)                                   // queue          
3:        process current node                             //compute level or distance 
4’:       current thread visits all neighbors         // generate update vector 
4”:       each thread in block visits a neighbor  // generate update vector 
5:   end if  
CUDA_workset_gen kernel 
1:    id = getThreadId() 
2:    if (id<nodeNumber && update[id]) 
3’:       generate bitmap working set                 // bitmap 
3”:       generate queue working set                  // queue 
4:    end if 

Figure 9: Pseudo-code of kernel functions. In the 
CUDA_computation kernel, instructions 1’ and 4’ correspond to 
thread-based mapping, whereas 1” and 4” correspond to block-
based mapping; instructions 2’ and 2’’ correspond to bitmap- 
and queue-based working set, respectively. 

kernels using different mappings and working set 
representations. The 1st and 2nd lines of the pseudo-code 
partition the work among threads or thread-blocks. The 4th 
line represents the neighborhood visit. In the case of thread-
based mapping, a single thread visits all the neighbors of the 
current node; in the case of block-based mapping, each 
thread visits a single neighbor. In the CUDA_workset_gen 
kernel, each thread processes one element in the update 
vector and, if necessary, adds it to the working set. The 
queue-based implementation requires atomic operations to 
avoid race conditions while adding nodes to the queue. 

The ordered and unordered implementations of BFS are 
very similar. The ordered SSSP has the added complexity of 
finding the minimum distance value in the working set 
(findmin), operation which is not required by the unordered 
version of SSSP. A CPU implementation of ordered SSSP 
usually uses a heap data structure to ensure fast insertions in 
the working set and accesses to it. We implemented the 
findmin operation on GPU by parallel reduction (which is 
faster than maintaining a heap on CPU). 

C. Working Set on GPU 
The bitmap representation of the working set was first 
adopted in [7] in combination with thread-based mapping. 
The advantage of this representation is its simplicity: since 
each node has an own entry in the bitmap and is handled by a 
different thread (or thread-block), no synchronization is 
required when accessing the working set or generating it 
from the update vector.   

The queue representation has an added complexity. As 
explained above, the CUDA_workset_gen kernel requires 
atomic operations to convert the update vector into queue 
form. In this work, we adopt the basic implementation 
described in [33]. Specifically, each thread uses an atomic 
operation only to get a unique insertion index within the 
queue. Thus, threads get indexes sequentially, but insert 
nodes into the queue in parallel. Once the queue-based 
working set is created, accesses to it within the 
CUDA_computation kernel are coalesced, and do not require 
any additional synchronization mechanism. 

There are several ways to improve the performances of 
work queues on GPU. Luo et al [8] propose a hierarchical 
queue implemented using both shared and global memory. 
The use of shared memory provides faster accesses and 
lighter synchronizations. To avoid serialization while 
generating indexes into the queue, Merril et al [9] replace 
atomic operations with prefix scans. These optimizations are 
orthogonal to this work, but can certainly be applied to our 
reference implementations. 

VI. ADAPTIVE RUNTIME 
As discussed in the previous sections, the heterogeneity of 
the graphs used in practical applications makes it impossible 
to determine a single GPU implementation which is optimal 
across all datasets and algorithms. This fact is supported by 
the experimental evaluation that we will present in Section 
VII. To tackle this problem, we design an adaptive runtime 
that allows dynamically selecting the GPU implementation 
that better suits the characteristics of the dataset. Specifically, 
our runtime can perform coarse- and fine-grained decisions. 
First, given a graph and an algorithm (e.g. BFS or SSSP), it 
can select the best GPU implementation according to the 
graph topology and the underlying GPU hardware. Second, 
while processing a graph, our runtime can dynamically 
switch between different implementations of the same 
algorithm in different phases of the traversal. 

A. Overview 
The structure of our adaptive framework is shown in Figure 
10. We expose to the user an API consisting of an abstract 
graph data type. Such API provides primitives to define and 
instantiate graphs, as well as functions to run the SSSP and 
BFS algorithms on them. At the low level, we have different 
GPU implementations for both SSSP and BFS, as defined by 
the exploration space described in Section IV. Between the 
graph API and the algorithm implementation layers, we have 
a runtime layer. Such runtime consists of two components: a 
graph inspector and a decision maker. The former inspects 
relevant characteristics of the graph (e.g., number of nodes, 
number of edges, minimum, maximum, average node 
degree), and monitors significant runtime attributes (e.g., 
working set size). The latter dynamically selects the most 
suitable implementation based on the values of these 
attributes and on the hardware characteristics of the 
underlying GPU. 

In our experimental evaluation (Section VII), we found 
that unordered implementations of both BFS and SSSP 
generally perform better than their ordered counterparts. 
This observation is coherent with [3]; this result is due not 
only to the larger amount of parallelism available in 
unordered graph algorithms, but also to the overhead due to 
applying the order relationship to the working set in case 
ordered versions. Therefore, our adaptive framework uses 
only unordered versions of SSSP and BFS, and makes 
decisions in two dimensions: mapping method and working 
set implementation. This leads to 4 combinations: (1) thread 
mapping + bitmap, (2) thread mapping + queue, (3) block 
mapping + bitmap, and (4) block mapping + queue. As 
discussed below, the selection mechanism takes the 



8 
 

utilization of the GPU hardware into account: specifically, 
we consider the fraction of cores and SMs effectively used, 
as well as the amount of thread divergence introduced. 

B. Selection of the Mapping Method  
The first decision to be made by our runtime system is 
whether to use thread- or block-based mapping. This 
decision is based on two considerations: core/SM utilization 
and amount of thread divergence introduced. 

Core/SM utilization - As mentioned in Section III.C, in 
CUDA thread-blocks are mapped onto SMs and threads are 
mapped onto cores. In Fermi GPUs (used in this work), each 
SM consists of 32 or 48 cores. In each graph traversal step, 
only nodes belonging to the working set need to be 
processed. The working set size is an indicator of the amount 
of coarse-grained parallelism available within a graph 
traversal step. Thus, small working sets (for which thread-
based mapping is unable to fully utilize the available GPU 
cores) make block-based mapping preferable. Thread-based 
mapping becomes a viable option when the working set size 
approximates the number of cores available on the GPU.  

In case of large working sets, both thread- and block-
based mapping are viable options, and an additional selection 
criterion is required. To this end, we consider the average 
outdegree of the nodes in the graph. In case of block-based 
mapping, the neighborhood visit is cooperatively performed 
by the threads within the block (that is, each thread will 
process one or more neighbors). The minimum practical size 
for a thread-block corresponds to the warp size (i.e., 32 
threads). If block-based mapping is used, an average 
outdegree well below the warp size causes cores within a SM 
to be unutilized. Therefore, a small average outdegree makes 
a thread-based mapping preferable to block-based mapping. 

Thread divergence – Using the average outdegree to 
discriminate between thread- and block-based mapping helps 
also with another consideration: in case of thread-based 
mapping, better performances are achieved if the amount of 
warp divergence is limited. Since, in case of thread-based 
mapping, every thread processes all the neighbors of an 
active node, the performances of each warp will be limited 
by the node with the largest outdegree. In particular, large 
outdegree variance may cause warp divergence. As can be 
observed in Table 1, graphs with high average outdegree 
tend to exhibit uneven outdegree distributions. By using 
thread-based mapping only when the average outdegree is 

low, we limit the amount of thread divergence which would 
originate by unbalanced outdegree distributions.    

C. Selection of the Working Set Representation 
The second decision to be made by our runtime is the 
working set representation, i.e., bitmap vs. queue. As 
discussed in Section V.C, a queue implementation involves a 
larger number of synchronizations. In particular, the creation 
of the queue requires a number of atomic operations equal to 
the queue length; such atomic operations introduce 
serialization among threads, thus degrading performance. 
This suggests that bitmaps are preferable to queues in the 
presence of large working sets. This criterion is also coherent 
with another consideration. When using a bitmap 
representation, there will be a one-to-one mapping between 
threads (for thread-based mapping) or blocks (for block-
based mapping) and nodes. Small working sets can cause 
many threads/blocks to be invoked without performing any 
real work, leading to core/SM underutilization. Specifically, 
in case of a bitmap representation and a graph with |N| nodes, 
a working set of size |WS| leads to a fraction of wasted 
threads/blocks equal to 1-|WS|/|N|. In conclusion, small 
working sets will be implemented using a queue, and large 
ones using a bitmap.  

D. Decision Space 
The decision space resulting from the previous 
considerations is illustrated in Figure 11. We represent the 
size of the working set along the x-axis, and the average 
outdegree of the graph along the y-axis. This decision space 
is broken into 5 regions by three threshold values: T1, T2 and 
T3. In particular, T1 and T2 correspond to the considerations 
made for the selection of the mapping method, and T3 to the 
one for the choice of the working set representation. 

The areas in the decision space represent different 
implementations. To the left of T2, the implementation will 
always be B_QU (block-mapping + queue).  Between T2 and 
T3, the working set is implemented with a queue while the 
mapping strategy depends on the average node outdegree 
(see T1). To the right of T3, the working set is represented as 
a bitmap, and the mapping still depends on the average 
outdegree (T1). T1, T2 and T3 are experimentally tuned, as 
discussed in Section VII. 

E. Runtime Overhead 
To understand the overhead introduced by our runtime, we 
must consider its two components: the decision maker and 

Graph API

Runtime

Libraries

SSSP
T_BM

T_QU
B_BM

B_QU

BFS
T_BM

T_QU
B_BM

B_QU

Graph 
Inspector Decision Maker

 

Figure 10: Overview of our adaptive framework. 

B_BM

T_BM

B_QU

T_QU

B_QU

Average Outdegree

Size of working set

T1

T2 T3  

Figure 11: Decision space. 



9 
 

Table 2: Speed up of BFS (GPU implementation over serial CPU baseline). 

 O_T_BM O_T_QU O_B_BM O_B_QU U_T_BM U_T_QU U_B_BM U_B_QU 

CO-road 0.81 1.12 0.04 1.15 0.94 1.50 0.04 1.49 
CiteSeer 24.39 15.63 12.35 49.22 24.68 15.04 12.48 48.94 

p2p  3.79 3.34 0.93 3.22 3.66 3.44 0.95 3.37 
Amazon 13.59 11.12 2.05 10.62 13.94 10.60 2.07 11.52 
Google 20.76 18.82 2.94 18.90 21.57 18.03 2.96 20.36 

SNS 20.39 16.33 8.43 24.02 24.04 18.00 8.64 24.30 
 

Table 3: Speed up of SSSP (GPU implementation over serial CPU baseline – Dijkstra’s algorithm). 

 O_T_BM O_T_QU O_B_BM O_B_QU U_T_BM U_T_QU U_B_BM U_B_QU 

CO-road 0.02 0.01 0.0012 0.01 1.88 1.76 0.35 2.11 
CiteSeer 136.23 112.77 11.81 139.53 126.47 118.91 483.24 867.91 

p2p  1.29 1.16 0.22 1.22 135.65 127.38 49.17 131.88 
Amazon 3.29 3.03 0.26 3.12 95.10 58.93 37.71 99.83 
Google 2.27 2.16 0.18 2.19 96.57 58.12 32.94 89.32 

SNS 25.37 24.33 1.87 24.81 174.82 140.45 136.08 276.23 
 

the graph inspector. The former has extremely low overhead 
since its logic (summarized by Figure 11) is straightforward. 
In order to allow the decisions described above, our graph 
inspector must monitor the working set size and the average 
outdegree of the nodes within the working set. This 
information can be collected at runtime by running a separate 
kernel (parallel scan can allow a more efficient computation 
of the average outdegree). This overhead is much greater 
than that of the decision maker. In our implementation, we 
reduce this overhead in two ways: (i) by considering the 
average outdegree of the whole graph (which is a value 
computed only once when reading the graph) rather than the 
one of the current working set, and (ii) by sampling (that is, 
by not performing measurements in every traversal step). 
These design decisions represent a trade-off between 
execution efficiency and runtime overhead. The selection of 
the sampling rate and its effect on performances will be 
discussed in Section VII.  

VII. EXPERIMENTAL EVALUATION 
We present an experimental evaluation on the datasets of 
Table 1. We first evaluate the static implementations 
corresponding to Figure 3. We then study how to tune the 
parameters of our adaptive runtime.  We finally compare the 
performance achieved through our runtime with those 
achieved through the static solutions. 

Our testing platform consists of an Intel Core i7 CPU 
(running CentOS 5.5) and an Nvidia Tesla C2070 GPU, 
which contains 14 32-core SMs. We use gcc 4.1.2 and nvcc 
4.0 compilers, both with –O3 optimizations. Our results 
include CPU processing, GPU processing and CPU-GPU 
transfer times. We do not measure the time spent loading 
graph data from the hard drive.  

A. Performance of Static Implementations 
Tables 2 and 3 summarize the performances of the BFS and 

SSSP implementations covering the exploration space in 
Figure 3. In particular, the tables report the speed up of each 
GPU implementation over a serial CPU implementation. All 
the GPU solutions are named with three fields separated by 
underscore. The first field indicates whether the 
implementation is ordered (O) or unordered (U); the second 
field distinguishes thread-based (T) and block-based (B) 
mapping; the third field indicates the representation of the 
working set: bitmap (BM) vs. queue (QU). For instance, 
“O_B_BM” indicates that the implementation is ordered, 
uses block-based mapping and a bitmapped working set. For 
each dataset, grey cells show the best performance achieved.  

The tables show the results reported using the best kernel 
configurations, which have been obtained by using the 
“CUDA Occupancy Calculator” and conducting experiments 
under different settings. When using thread-based mapping, 
we found that the best results can be achieved with 192 
threads per block. When using block-based mapping, the 
optimal number of threads per block is the multiple of 32 
closest to the average node outdegree in the graph. 

For BFS, we can make the following observations. First, 
when using the same mapping strategy and working set 
representation, ordered and unordered algorithms achieve 
very similar performance. In ordered BFS, the nodes are 
processed level by level and each node is accessed exactly 
once. In unordered BFS, in principle each node may be 
updated multiple times. However, since in every iteration we 
process the entire working set, our unordered GPU 
implementation also proceeds level by level, unless the 
working set is initialized through some depth-based traversal. 
We experimentally verified that limited amount of 
initialization (e.g., depth-based traversal in 3-5 directions) 
does not substantially affect the results. Second, the GPU 
implementation does not outperform its CPU counterpart on 
all datasets. In fact, the GPU performance is poor for the 
CO-road network, whose average outdegree is only 2.6 (see 



10 
 

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13%

E
xe

cu
tio

n 
T

im
e 

(s
)

Percentage of T3 over number of nodes

CO-Road

0.15
0.155
0.16
0.165
0.17
0.175
0.18
0.185
0.19
0.195
0.2

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13%

E
xe

cu
tio

n 
T

im
e 

(s
)

Percentage of T3 over number of nodes

CiteSeer

0.0052

0.0054

0.0056

0.0058

0.006

0.0062

0.0064

0.0066

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13%

E
xe

cu
tio

n 
T

im
e 

(s
)

Percentage of T3 over number of nodes

p2p

 

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13%

E
xe

cu
tio

n 
T

im
e 

(s
)

Percentage of T3 over number of nodes

Amazon

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13%

E
xe

cu
tio

n 
T

im
e 

(s
)

Percentage of T3 over number of nodes

Google

1.35

1.4

1.45

1.5

1.55

1.6

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13%

E
xe

cu
tio

n 
T

im
e 

(s
)

Percentage of T3 over number of nodes

SNS

 
Figure 13: Performance under different T3 settings (SSSP) 

Table 1), and whose diameter is relatively large (more than 
1000 levels). Third, the best GPU implementation varies 
from dataset to dataset. For instance, the CO-road and 
CiteSeer networks favor U_B_QU, while the Amazon and 
p2p networks achieve best performance with U_T_BM. 

For SSSP, we can observe the following facts. First, 
unordered algorithms are significantly faster than their 
ordered version. This has two motivations: (1) unordered 
SSSP exhibits more parallelism than ordered SSSP, and (2) 
ordered SSSP suffers from the cost of implementing the 
findmin operation. Second, the ordered SSSP on GPU can 
achieve considerable speedup over its serial CPU version. In 
every iteration, nodes at the same distance can be processed 
in parallel. In addition, the parallel reduction on GPU is a 
good alternative to executing the findmin operation on CPU. 
Third, by concurrently processing the elements in each 
node’s neighborhood, block-based mapping leads to high 
speedups on graphs with large average outdegrees (e.g., 
CiteSeer and SNS). Finally, we can again observe that the 
best implementation strictly depends on the dataset; for 
example U_B_BM performs very well on CiteSeer, but 
exhibits the worst performance on the other 5 datasets. 

Figure 12 shows the processing speed (in millions nodes 
per second) of the best GPU implementation of BFS and 
SSSP across the considered datasets. BFS achieves better 
performance than SSSP due to its faster convergence. Our 

experiments show similar results to previous work [8] and 
prove that GPU can be successfully used to run graph 
algorithms on large datasets. Since our results show that the 
best solution depends on the characteristics of the underlying 
dataset, we now evaluate the use of our adaptive runtime. 

B. Parameter Tuning for our Adaptive Runtime. 
Before evaluating the performance of our adaptive runtime, 
we study how to tune its parameters. In particular, we start 
with T1, T2, and T3, the thresholds used by the decision maker 
and illustrated in Figure 11. 

Recall that T1 is related to the average outdegree of the 
graph, and allows discriminating between thread- and block-
based mapping when the size of the working set would allow 
both alternatives. Since each thread-block must at least 
contain one warp (i.e., 32 threads), if the average outdegree 
is less than 32, block-based mapping will underutilize the 
hardware resources. Thus, we set T1 to 32. 

T2 indicates the size of the working set below which 
block-based mapping should be always preferred to thread-
based mapping. Its value is related to the kernel 
configuration and the number of SMs on the GPU. As 
mentioned in the previous section, we experimentally 
verified that good configurations for thread-based mapping 
are characterized by 192 threads per block. The GPU used in 
our experiments has 14 SMs. When the size of the working 
set is less than 192*14 = 2,688 nodes, thread-based mapping 
will leave some SMs idle, thus underutilizing the GPU. To 
confirm this analysis, we measure the kernel execution time 
of T_QU and B_QU across all iterations of BFS and SSSP. 
Our results show that B_QU outperforms T_QU for working 
set sizes smaller than ~3000. Therefore, we set T2 to 2,688. 

T3 indicates the size of the working set above which a 
bitmap representation is preferable to a queue. In Figure 13 
we report the results of experiments conducted to study how 
the performance changes with T3. We recall that the ratio 
between the size of the working set and the number of nodes 
in the graph indicates, in case of a bitmap representation, the 
fraction of threads/blocks instantiated that will effectively 
perform some work. Therefore, in the x-axis we show the 

5.70 

21.50 

10.87 

26.89 

18.22 19.42 

0.50 
3.39 

6.83 5.59 5.27 4.09 

0.0 

5.0 

10.0 

15.0 

20.0 

25.0 

30.0 

CO-road CiteSeer p2p Amazon Google SNS

Pr
oc

es
si

ng
 S

pe
ed

 (M
 n

od
e/

s)

Dataset

BFS SSSP

 
Figure 12: Processing speed of best implementation. 



11 
 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n 
tim

e 
(s

)

Sampling period

CO-road

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n 
tim

e 
(s

)

Sampling period

CiteSeer

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n 
tim

e 
(s

)

Sampling period

p2p

 

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n 
tim

e 
(s

)

Sampling period

Amazon

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10
E

xe
cu

tio
n 

tim
e 

(s
)

Sampling period

Google

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n 
tim

e 
(s

)

Sampling period

SNS

 
Figure 14: Performance under different sampling rates (SSSP). 

percentage ratio of T3 over the number of nodes in the graph. 
As can be seen, for all datasets but CiteSeer, the execution 
time increases with T3. This can be easily explained as 
follows: in the presence of large working sets, the queue 
generation incurs higher overheads due to atomic operations. 
When the ratio T3/#node is less than 6%, the execution time 
increases very slowly. However, when it exceeds 7% or 8%, 
the execution time increases rapidly (CO-road, p2p and SNS). 
Although this trend is not exactly the same for all datasets, 
we set the value of T3 to 6%. It is worth explaining why, in 
the case of CiteSeer, the execution time decreases even when 
the ratio T3/#node reaches 13%. The CiteSeer dataset is 
characterized by a high average outdegree, which leads to 
higher parallelism. In case of a queue implementation, the 
amount of work performed within a thread-block amortizes 
the overhead due to the atomic operations performed when 
generating the queue, making a queue preferable to a bitmap. 

The graph inspector introduces a runtime overhead while 
monitoring the working set size. Such overhead can be 
reduced by performing this measurement task periodically, 
rather than at every iteration. Figure 14 shows the 
performance under different sampling rates. Due to lack of 
space and given the similarity between BFS and SSSP, we 
show only the SSSP results. We can observe that the 
performance generally benefits from a decreased sampling 
rate. However, the changes are not smooth and vary across 
datasets. In general, datasets characterized by a longer 
convergence time (e.g. CO-road, CiteSeer, and SNS) 
experience a slow and steady performance improvement as 
the sampling rate decreases. On the other hand, graphs that 
take only a few iterations to converge (e.g., Google, p2p) are 
more sensitive to changes in the sampling rate. To make a 
trade-off, we set the sampling rate of our adaptive runtime to 
6. With this setting, we observed a runtime overhead varying 
from 10.6% (on CiteSeer) to 13% (on p2p). 

C. Overall Performance of Adaptive Runtime 
Figure 15 shows the speedup comparison between our 
adaptive runtime, the worst and the best static solution. In 
every case, the best static implementation is taken as baseline. 

Only unordered implementations are considered (also for the 
worst case). The values reported on the bars are the speedup 
numbers of the worst static and of the adaptive solution over 
the best static implementation. Since our goal is to argue that 
an adaptive system can capture dynamic parallelism and not 
to develop a highly tuned code, in our study we use basic 
kernels similar to those by Harish and Narayanan [7]. 
However, the performance achieved by our dynamic solution 
is in the same order of magnitude as that achieved by Merrill 
et al [9] (for example, our dynamic BFS computes 0.74 
billion edges/sec on the CiteSeer network).  

We can observe the following. First, the performance of 
the worst static solution can be as low as 3% (and as high as 
52%) of that of the best static solution. Second, despite its 
overhead, our adaptive runtime achieves better performance 
than the best static implementation on most of these real 
world graphs. Specifically, the speedup over the best static 
solution ranges from 1.43 to 2.02. Although on CiteSeer, 
Google (SSSP) and SNS (SSSP) the adaptive runtime has no 
advantage compared to the best static solution, it still 
achieves 95-99% of its performance (and avoids the penalty 
associated with possibly choosing a bad implementation).  

VIII. CONCLUSION AND FUTURE WORK 
In this paper we explored different ways to implement graph 
algorithms on GPU. Our characterization of datasets used in 
real world applications motivate us to design an adaptive 
runtime system that dynamically selects the most suitable 
GPU implementation of a given graph algorithm based on 
the topology of the input dataset and on other parameters 
monitored at runtime. Our experiments show that our 
framework can achieve higher performance than a static 
solution and is resilient to the irregularity and heterogeneity 
of real world graphs.   

In the future, we plan to extend our framework to support 
more graph algorithms (e.g. minimum spanning tree and 
minimum cut) and multiple GPUs. In addition, we plan to 
integrate other mechanisms (e.g. speculative execution, 
dynamic parallelism) that can enable and facilitate the 
effective deployment of graph algorithms on GPUs. 



12 
 

0.03 
0.25 0.26 0.15 0.14 

0.36 

1.55 

0.99 

2.02 
1.80 

1.45 1.43 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

CO-road CiteSeer p2p Amazon Google SNS

R
at

io
 to

 N
or

m
al

iz
ed

 S
pe

ed
up

Dataset

Worst Best Adaptive

0.17 0.15 
0.36 0.38 0.34 

0.51 

1.73 

0.93 

1.60 1.63 

0.95 0.95 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

CO-road CiteSeer p2p Amazon Google SNS

R
at

io
 to

 N
or

na
liz

ed
 S

pe
ed

up

Dataset

Worst Best Adaptive

 
Figure 15: Performance of our adaptive runtime on BFS (to the left) and SSSP (to the right) – baseline: best static solution. 

Furthermore, we plan to validate our study on large, 
synthetic datasets (e.g., Graph500). 

ACKNOWLEDGMENTS 
We thank the reviewers for their feedback. This work has 
been supported by NSF award CNS-1216756 and by 
equipment donations from Nvidia Corporation. 

REFERENCES 
[1] M. Kulkarni, K. Pingali, B. Walter, et al, "Optimistic 

parallelism requres abstractions," in Proc. of PLDI 2007. 
[2] M. Kulkarni, M. Burtscher, et al, "How much parallelism is 

there in irregular applications," in Proc. of PPoPP 2009. 
[3] M. A. Hassaan, M. Burtscher, and K. Pingali, "Ordered vs. 

unordered: a comparison of parallelism and work-efficiency 
in irregular algorithms," in Proc. of PPoPP 2011. 

[4] D. Gregor and A. Lumsdaine, "The parallel BGL: A generic 
library for distributed graph computations," In Proc. of 
Parallel Object-Oriented Scientific Computing, 2005. 

[5] F. Hielscher and P. Gottschling. (2004). ParGraph. 
http://pargraph.sourceforge.net/ 

[6] P. An, A. Jula, S. Rus, et al, "STAPL: an adaptive, generic 
parallel C++ library," in Proc. of LCPC 2003. 

[7] P. Harish and P. J. Narayanan, "Accelerating large graph 
algorithms on the GPU using CUDA," in Proc. of HiPC 2007. 

[8] L. Luo, M. Wong, and W.-M. Hwu, "An Effective GPU 
Implementation of Breadth-first Search," in Proc. of DAC 
2010. 

[9] D. Merrill, M. Garland, and A. Grimshaw, "Scalable GPU 
graph traversal," in Proc. of PPoPP 2012. 

[10] M. Mendez-Lojo, M. Burtscher, and K. Pingali, "A GPU 
Implementation of Inclusion-based Points-to Analysis," in 
Proc. of PPoPP 2012. 

[11] J. Barnat, P. Bauch, L. Brim, and M. Ceska, "Computing 
Strongly Connected Components in Parallel on CUDA," in 
Proc. of IPDPS 2011. 

[12] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, 
"Accelerating CUDA Graph Algorithms at Maximum Warp," 
in  Proc. of PPoPP 2011. 

[13] S. Hong, T. Oguntebi, and K. Olukotun, "Efficient Parallel 
Graph Exploration on Multi-Core CPU and GPU," in Proc. of 
PACT 2011. 

[14] S. Che, M. Boyer, J. Meng, et al, "Rodinia: A benchmark 
suite for heterogeneous computing," in Proc. of IISWC 2009. 

[15] V. W. Lee, C. Kim, J. Chhugani, et al, "Debunking the 100X 
GPU vs. CPU myth: an evaluation of throughput computing 
on CPU and GPU," in Proc. of ISCA 2010. 

[16] 9th DIMACS Implementation Challenge. 
www.dis.uniroma1.it/challenge9 

[17] 10th DIMACS Implementation Challenge. 
www.cc.gatech.edu/dimacs10/index.shtml 

[18] Stanford Large Network Dataset Collection. 
http://snap.stanford.edu/data 

[19] D. A. Bader and K. Madduri, "Designing Multithreaded 
Algorithms for Breadth-First Search and st-connectivity on 
the Cray MTA-2," in Proc. of ICPP 2006. 

[20] C. E. Leiserson and T. B. Schardl, "A work-efficient parallel 
breadth-first search algorithm (or how to cope with the 
nondeterminism of reducers)," in Proc of SPAA 2010. 

[21] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, "Scalable 
Graph Exploration on Multicore Processors," in Proc. of  SC 
2010. 

[22] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders, "A 
Parallelization of Dijkstra's Shortest Path Algorithm," in Proc. 
of  MFCS 1998. 

[23] G. Vaira and O. Kurasova, "Parallel Bidirectional Dijkstra's 
Shortest Path Algorithm," in Proc. of DB&IS 2010, 2011. 

[24] D. B. Johnson and P. Metaxas, "A parallel algorithm for 
computing minimum spanning trees," in Proc. of SPAA 1992. 

[25] F. Dehne and S. Gotz, "Practical Parallel Algorithms for 
Minimum Spanning Trees," in Proc. of SRDS 1998. 

[26] D. A. Bader and G. Cong, "Fast shared-memory algorithms 
for computing the minimum spanning forest of sparse 
graphs," J. Parallel Distrib. Comput., vol. 66, pp. 1366-1378, 
2006. 

[27] V. Koubek and J. Krsnakova, "Parallel algorithms for 
connected components in a graph," in Fundamentals of 
Computation Theory, 1985. 

[28] H. Gazit, "An optimal randomized parallel algorithm for 
finding connected components in a graph," in Proc. of  FOCS 
1986. 

[29] I. William Mclendon, B. Hendrickson, et al, "Finding strongly 
connected components in parallel in particle transport 
sweeps," in Proc. of SPAA 2001. 

[30] W. Schudy, "Finding strongly connected components in 
parallel using O(log2n) reachability queries," in Proc. of 
SPAA 2008. 

[31] J. Nickolls, I. Buck, M. Garland, and K. Skadron, "Scalable 
Parallel Programming with CUDA," ACM Queue, 2008. 

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, 
Introduction to Algorithms: MIT Press, 2001. 

[33] J. Balfour. (Aug 5). CUDA Threads and Atomics. 
mc.stanford.edu/cgi-
bin/images/3/34/Darve_cme343_cuda_3.pdf 

 


