
Nested Parallelism on GPU: Exploring Parallelization Templates   
for Irregular Loops and Recursive Computations 

Da Li, Hancheng Wu, Michela Becchi 
Dept. of Electrical and Computer Engineering 

University of Missouri - Columbia 
da.li@mail.missouri.edu, hancheng.wu@mail.missouri.edu, becchim@missouri.edu 

 

Abstract—The effective deployment of applications exhibiting 
irregular nested parallelism on GPUs is still an open problem. 
A naïve mapping of irregular code onto the GPU hardware 
often leads to resource underutilization and, thereby, limited 
performance. In this work, we focus on two computational 
patterns exhibiting nested parallelism: irregular nested loops 
and parallel recursive computations. In particular, we focus on 
recursive algorithms operating on trees and graphs. We 
propose different parallelization templates aimed to increase 
the GPU utilization of these codes. Specifically, we investigate 
mechanisms to effectively distribute irregular work to 
streaming multiprocessors and GPU cores. Some of our 
parallelization templates rely on dynamic parallelism, a feature 
recently introduced by Nvidia in their Kepler GPUs and 
announced as part of the OpenCL 2.0 standard. We propose 
mechanisms to maximize the work performed by nested 
kernels and minimize the overhead due to their invocation. 

Our results show that the use of our parallelization 
templates on applications with irregular nested loops can lead 
to a 2-6x speedup over baseline GPU codes that do not include 
load balancing mechanisms. The use of nested parallelism-
based parallelization templates on recursive tree traversal 
algorithms can lead to substantial speedups (up to 15-24x) over 
optimized CPU implementations. However, the benefits of 
nested parallelism are still unclear in the presence of recursive 
applications operating on graphs, especially when recursive 
code variants require expensive synchronization. In these cases, 
a flat parallelization of iterative versions of the considered 
algorithms may be preferable. 

I. INTRODUCTION  
In the last few years, the GPU architecture has 

increasingly become more general purpose. Nvidia GPUs, 
for example, have recently seen the inclusion of caches in 
their memory hierarchy, the progressive relaxation of their 
memory coalescing rules and the introduction of more 
efficient atomic and floating point operations. More recently, 
Nvidia has introduced the ability to perform nested kernel 
invocations in their Kepler GPUs. This feature, also known 
as dynamic parallelism, has been added to the OpenCL 2.0 
standard and will soon be released in AMD GPUs as well.  

These architectural and programmability enhancements 
have favored the adoption of GPUs not only as accelerators 
of regular applications (such as those operating on dense 
matrices and vectors), but also of irregular ones. Irregular 
applications, often operating on graph and tree data 
structures, are characterized by irregular and unpredictable 
memory access patterns, frequent control flow divergence 
and a degree of parallelism that is known only at runtime. 

While dynamic parallelism has the potential for 
increasing the GPU programmability and allowing support 

for recursive algorithms, the effective use of this feature – 
both as a load balancing mechanism and as an enabler of 
recursive algorithms – must still be understood. First, it is 
important to determine which classes of applications may 
benefit from the use of dynamic parallelism rather than from 
a flat parallelization of the code. Second, dynamic 
parallelism in CUDA has fairly elaborated semantics, and the 
programmer is still left with the burden of understanding its 
memory and execution model. 

In this work we focus on irregular applications exhibiting 
nested parallelism. Specifically, we consider two categories 
of computational patterns: parallelizable irregular nested 
loops and parallelizable recursive codes. In the former, the 
amount of work associated to the iterations of inner loops 
can vary across the iterations of their outer loops. In the 
latter, recursive calls may spawn different amount of parallel 
work. As a consequence of this uneven work distribution, 
simple parallelization templates handling all the loop 
iterations or recursive calls in the same way may lead to 
hardware underutilization. On the other hand, adding simple 
load balancing mechanisms to the parallelization may allow 
a better mapping of work to hardware and, consequently, it 
may improve the application performance. Here, we focus on 
simple load balancing schemes and study the use of dynamic 
parallelism as a means to achieve better hardware utilization. 
In particular, we design parallelization templates aimed to 
maximize the work performed by nested kernels and 
minimize their overhead. Our parallelization techniques can 
be incorporated in compilers, thus freeing the programmer 
from the need to worry about the mapping of work to the 
hardware and to understand the complex semantics of GPU 
dynamic parallelism. 

In this work, we make the following contributions: 
• We propose and study several parallelization templates to 

allow the effective deployment on GPU of iterative and 
recursive computational patterns that present uneven work 
distribution across iterations and recursive calls. 

• We explore the use of nested parallelism on GPU in the 
context of two computational patterns: irregular nested 
loops and recursive computations.  

• We evaluate the proposed parallelization templates and the 
use of dynamic parallelism on an irregular matrix 
computation (SpMV), four graph algorithms (SSSP, 
betweenness centrality, PageRank and BFS), and two tree 
traversal algorithms (tree descendants and tree height).  

II. PARALLELIZATION TEMPLATES 

A. Motivation 
GPUs present two levels of hardware parallelism: 



streaming multiprocessors and CUDA cores in Nvidia’s 
parlance, and SIMD units and stream processors in AMD’s. 
Commonly used programming models for many-core 
processors, such as CUDA and OpenCL, expose this two-
level hardware parallelism to the programmer through a two-
level multithreading model: at a coarse grain, CUDA thread-
blocks and OpenCL work-groups are mapped onto streaming 
multiprocessors and SIMD units; at a fine grain, CUDA 
threads and OpenCL work-items are mapped onto cores and 
stream processors. An additional level of parallelism is 
provided by the opportunity to launch multiple kernels 
concurrently through CUDA streams and OpenCL command 
queues. In addition, Kepler GPUs allow nested kernel 
invocations; this functionality, called dynamic parallelism, 
has recently been announced as part of the OpenCL 2.0 
standard and will soon be included in AMD devices. In the 
remainder of this paper, we will use CUDA terminology. 

Despite the presence of hardware and software support 
for nested parallelism, finding the optimal mapping of 
algorithms exhibiting multiple levels of parallelism onto 
GPUs is not a trivial problem. Especially in the presence of 
irregular computation, a naïve mapping of irregular code 
onto the GPU hardware can lead to resource underutilization 
and, thereby, limited performance. Besides allowing 
recursion, dynamic parallelism has the potential for enabling 
load balancing and improving the hardware utilization. This 
is because nested kernels, each with a potentially different 
degree of parallelism, are dynamically mapped to the GPU 
cores by the hardware scheduler according to the runtime 
utilization of the hardware resources. Unfortunately, the 
effective use of this feature has yet to be understood: the 
invocation of nested kernels can incur significant overhead 
(due to parameter parsing, queueing, and scheduling) [1, 2] 
and may be beneficial only if the amount of work spawned is 
substantial.  

In this work, we consider two categories of 
computational patterns involving nested parallelism: 
applications containing parallelizable irregular nested loops 
(Section II.B) and recursive algorithms (Section II.C). We 
propose and analyze different parallelization templates aimed 
to improve the hardware utilization and the performance – 
some of them leveraging the dynamic parallelism feature. 
Our goal is to propose and evaluate simple and yet effective 
mechanisms that can be incorporated in GPU compilers. 

B. Irregular Nested Loops 
The hierarchical nature of the GPU architecture leads to 

two logical ways to map parallel loops onto the hardware: 
different loop iterations may be mapped either to GPU cores 
(thread-based mapping) or to streaming multiprocessors 
(block-based mapping) [3]. In the former case, loop 
iterations are assigned to threads; in the latter, they are 
assigned to thread-blocks. For brevity, we will use the terms 
thread- or block-mapped loops and kernels to indicate loops 
and kernels parallelized with one of these two approaches. In 
the presence of loop nesting, the mapping of inner loops 
depends on the mapping performed on the outer loops. For 
example, thread-based mapping on an outer-loop will cause 
serialization of all inner loops, while block-based mapping 

on an outer-loop will allow thread-based mapping on the 
inner loops. In addition, stream-based mapping (whereby 
different iterations of the loop are assigned to different 
CUDA streams) offers an additional degree of freedom to the 
parallelization process. During code generation, compiler 
analysis is required to identify the type of GPU memory 
where each variable must be stored and the need for 
synchronization and reduction operations to access shared 
variables. For example, in the presence of a block-mapped 
outer loop and a thread-mapped inner loop, variables defined 
inside the outer loop but outside the inner loop will be shared 
by all threads in a block. Therefore, these variables will need 
to be stored in shared memory, and their access by threads 
within the inner loop will require synchronization. 

Simply relying on thread- and block-based mapping in 
the parallelization process is acceptable for regular nested 
loops, wherein the number of iterations of an inner loop does 
not vary across the iterations of the outer loop. However, this 
simple solution may lead to inefficiencies when applied to 
irregular nested loops, for which this property does not hold. 
Irregular nested loops have the structure of the code in 
Figure 1(a). As can be seen, the number of iterations of the  
inner loop is a function of i, the outer loop variable. In the   
case of irregular nested loops, the use of thread-based  
mapping on the outer-loop may cause warp divergence (i.e., 
different threads are assigned different amounts of work), 
while the use of block-based mapping will lead to uneven 
block utilization, which in turn may cause GPU 
underutilization. Load balancing of irregular nested loops is 

 
Figure 1. Parallelization templates for irregular nested loops. 



one of the use cases for GPU dynamic parallelism. By 
launching nested grids of variable size, dynamic parallelism 
has the potential for improving the GPU utilization. 
However, despite its overhead has been reduced in recent 
CUDA distributions, the effective use of this feature depends 
on the amount of work spawned in each kernel invocation. 

We consider different parallelization templates aimed to 
perform load balancing in the presence of irregular nested 
loops. The proposed code variants trade off the advantages 
and disadvantages of thread- and block-based mapping, 
respectively. In particular, in Figure 1(b-e) we illustrate the 
load-balancing variants of the thread-based mapping 
template. Those variants rely on a load balancing threshold 
parameter (lbTHRES). The dual-queue template in Figure 1(b) 
divides the elements processed in the outer loop in two 
queues depending on the number of iterations they require in 
the inner-loop and processes those queues separately using 
thread- and block-based mapping, thus reducing the warp 
divergence of the former and the block-level work-imbalance 
of the latter. The delayed-buffer template in Figure 1(c) 
delays the execution of large iterations of the outer loop by 
queuing them in a buffer and then processing them using 
block-based mapping. We consider two versions of this 
template: one that stores the buffer in global memory (dbuf-
global), thus requiring two kernel calls and allowing 
redistributing the work among thread-blocks in the second 
phase; the other that stores the buffer in shared memory 
(dbuf-shared), thus requiring a single kernel invocation but 
possibly leading to uneven work distribution among thread-
blocks. The naïve dynamic parallelism (dpar-naïve) template 
in Figure 1(d) invokes a nested call for each “large” iteration 
(and performs the dynamic parallelism calls at a thread 
level). Finally, the optimized dynamic parallelism template 
(dpar-opt) in Figure 1(e) delays spawning nested calls to a 
second-phase; by invoking a single dynamic parallelism call 
for each thread-block, this code variant spawns fewer and 
larger kernels. 

We note that GPU dynamic parallelism has fairly 
elaborate semantics. For example, nested kernel calls are 
performed by threads, but their synchronization happens at 
the level of thread-blocks; registers and shared memory 
variables are not visible to nested kernels; memory 
coherence and consistency between parent and child kernels 
require explicit synchronization; and concurrent execution 
requires the use of CUDA streams. Fortunately, the proposed 
parallelization templates for nested loops are simple and can 
be incorporated in a compiler, allowing the programmer to 
write only the simplified code in Figure 1(a).  The automatic 
generation of the code variants corresponding to the 

proposed parallelization templates by a compiler will 
therefore hide from the programmer not only the two-level 
hardware and software organization of the GPU, but also the 
execution and memory model of GPU dynamic parallelism. 

Several factors may impact the effectiveness of the 
proposed parallelization templates. For example, the optimal 
load balancing threshold (lbTHRES) will depend on the 
underlying dataset and algorithm. In addition, the 
performance of each parallelization template will depend on 
the characteristics of the algorithm (that is, the nature of the 
work in Figure 1). We explore these aspects in our 
experimental evaluation (Section III.B). 

C. Recursive Functions 
Recursive functions are a second use case for dynamic 

parallelism. The current CUDA distribution contains a few 
examples of recursive kernels, some of which, however, 
perform worse than equivalent, non-recursive codes. 
QuickSort is one of these examples. The CUDA SDK 
contains two implementations of QuickSort, both relying on 
dynamic parallelism: Simple QuickSort and Advanced 
QuickSort. We compared these two recursive codes with a 
non-recursive MergeSort kernel, also part of the CUDA SDK.  
Figure 2 shows the performance results obtained by running 
these sort implementations on arrays whose size varies from 
300 thousand to 2 million elements. The performance of the 
recursive implementation depends on the setting of the 
recursive depth parameter, which allows trading off the load 
balancing effect of dynamic parallelism and its nested kernel 
call overhead. In fact, when the recursive depth limit is 
reached, Simple and Advanced QuickSort invoke a flat 
kernel (Selection and Bitonic Sort, respectively) to handle 
the remaining subarrays. As can be seen, while Advanced 
QuickSort outperforms Simple QuickSort, the best results 
are achieved by the non-recursive MergeSort kernel on all 
datasets. To conclude, while QuickSort is an interesting use 
case for dynamic parallelism, the overhead of the nested 
kernel calls and their need for synchronization makes a non-
recursive GPU implementation preferable to a recursive one 
even in the presence of more optimized and complex code. 

We aim to understand in which situations implementing 
recursive kernels using dynamic parallelism is preferable to 
non-recursive GPU variants of the algorithms considered. To 
be beneficial, the nested kernel invocations must spawn a 
significant amount of parallel work. Fortunately, parallel 
algorithms operating on trees and graphs often perform 
traversals over multiple paths or branches, and such 
traversals can be executed in parallel. These algorithms can 
therefore present a substantial amount of parallelism on large 
datasets. In addition, in the presence of irregular graphs and 
trees, the dynamic invocation of multiple, differently 
configured grids may lead to better load balancing of the 
parallel work and higher GPU utilization.  

Again, our goal is to propose parallelization templates 
that can be incorporated in a compiler, so as to free the 
programmer from the need to write parallel recursive 
functions optimized for the GPU hardware hierarchy. In 
addition, we want to allow the generation of GPU code also 
for devices that do not support nested kernel invocations. To 

 

 
Figure 2: Execution time of sort algorithms (y-axis in log10 scale) 



this end, whenever possible, we extract an iterative version 
of the algorithm using mechanisms such as tail recursion 
elimination and autoropes [4] (the latter applicable to tree 
traversal algorithms). We then parallelize the iterative 
version of the code using thread- or block-based mapping 
(flat parallelism) and the recursive version of the code using 
different hardware mapping options.  

As illustration, we consider the recursive computation of 
the number of descendants in a tree. Figure 3(a) shows a 
serial, recursive version of the algorithm. This code assumes 
that the descendants array, which stores the number of 
descendants of all nodes, is initialized to all 1s (that is, every 
node is a descendant of itself). The iterative version of the 
code in Figure 3(b) can be obtained by applying recursion 
elimination techniques. The flat kernel in Figure 3(c) 
parallelizes the iterative version of the code using thread-
based mapping. We consider two parallel recursive code 
variants. The naïve version in Figure 3(d) parallelizes the 
recursive code over the children of the current node using 
thread-based mapping; each thread can spawn a parallel 
kernel consisting of a single thread-block. The hierarchical 
version in Figure 3(e) performs block-based parallelization 
of the recursive code over the children of the current node 
and thread-based parallelization over its grandchildren. The 
nested kernel invocations in this case happen at the thread-
block level, and spawn hierarchical grids of threads. We 
perform recursion on the children of the current node. 
Recursion on the grandchildren would also be possible, but 
would cause more nested kernels to be spawned (thus 
degrading performance). Again, our goal is for the 
programmer to provide only the code in Figure 3(a): 
template-based parallelization can free the programmer from 
dealing with the semantics of nested parallelism for GPUs 
and the hierarchical hardware organization of these devices. 

In Section III.C, we evaluate the proposed parallelization 
template on different recursive algorithms. 

III. EXPERIMENTAL EVALUATION 

A. Experimental Setup 
Hardware and Software Setup: We run all our 

experiments on a server equipped with a Xeon E5-2620 CPU 
and an Nvidia K20 GPU. The machine uses CentOS release 
6.4. We compiled and run our code using gcc v4.4.7 and 
CUDA v6. We used Nvidia Visual Profiler to collect the 
profiling data presented in our analysis. Each data point is 
computed by averaging the kernel execution time reported 
over ten runs. 

Benchmark Applications: We evaluated the 
performance of the proposed parallelization templates on 
seven applications falling in two categories: algorithms 
including irregular nested loops (SSSP, BC, PageRank, 
SpMV) and recursive applications (tree descendants, tree 
heights and BFS). Whenever available, we used open-source 
implementations of these applications as baselines.  
• Single-Source Shortest Path (SSSP): For SSSP, we 
used the thread-mapped implementation described in [5] as 
baseline. SSSP is a memory intensive application with 
scattered memory accesses.  

• Betweenness Centrality (BC): A node’s BC is an 
indicator of its centrality in a network, and its value is equal 
to the number of shortest paths from all nodes to all others 
that pass through that node. Our parallel implementation is 
based on [6] and operates in two phases. First, it constructs 
the shortest paths tree using BFS (we consider unweighted 
graphs); second, it computes the BC value by traversing the 
shortest path tree. Both phases present irregular nested loops 
and scattered memory accesses.  
• PageRank: PageRank is a popular graph analysis 
algorithm to rank web pages. We consider the GPU 
implementation described in [7] as a reference. This 
algorithm contains a parallelizable, irregular nested loop: 
each iteration of the outer loop processes a different webpage 
(node in a graph); the inner loop collects ranks from the 
neighbors of the considered node.  
• Sparse Matrix-Vector multiplication (SpMV): SpMV  
[8] calculates the product of a sparse matrix and a dense 
vector, and is an important building block for diverse 
applications in scientific computing, financial modeling and 
information retrieval. Since the sparse matrix is represented 
in Compressed Sparse Row format, the nested loop within 
the matrix multiplication algorithm is irregular.  

 
Figure 3. Application of different parallelization templates for recursive 
algorithms to the computation of tree descendants. 



• Tree Descendants/Heights: Tree Descendants and Tree 
Heights are tree traversal algorithms that calculate the 
number of descendants and the heights of all nodes in a tree. 
Figure 3 shows the pseudo-code of our flat and recursive 
implementations of tree traversal; we have generated similar 
code for tree height. 
• Breadth First Search (BFS): For BFS, we used the 
thread-mapped implementation described in [5] as code 
variant exhibiting flat parallelism. This implementation is 
work-efficient and traverses the graph level by level. Our 
recursive code recurses over the neighbors of each node. 
Since the scheduling of parallel recursive calls is non-
deterministic, in our recursive code variants each node can 
be traversed multiple times provided that its level decreases 
at each traversal. In addition, since two nodes in a graph may 
have overlapping neighborhoods, the recursive 
implementations require atomic operations.  

Datasets: For SSSP, PageRank and SpMV, we use 
CiteSeer, a paper citation network from the DIMACS 
implementation challenges [9]. CiteSeer has about 434 
thousand nodes, 16 million edges and a node outdegree that 
varies from 1 to 1,188 across the graph (with an average of 
73.9). For BC we use Wikipedia’s who-votes-on-whom 
network (Wiki-vote) [10], a small-world network consisting 
of about 7 thousand nodes, 100 thousand edges and a node 
outdegree that varies from 0 to 893 across the graph (with 
an average of 14.6.9). For recursive algorithms, we use 
synthetic datasets as described in Section III.C. 

B. Experiments on Irregular Nested Loops Algorithms 
In this section, we first discuss the selection of the kernel 

configurations used in our experiments; we then illustrate the 
rationale of our experiments by presenting some results on 
SSSP; and we finally complete our discussion by comparing 
the results reported on PageRank, BC and SpMV.  

All the charts presented in this section report the speedup 
of the code variants derived from the use of the 
parallelization templates in Figure 1 over a baseline 
implementation that uses thread-mapping in the outer loop 
and no load balancing. The baseline GPU implementations 
achieve the following speedups over serial CPU code: 8.2x 
(SSSP), 2.5x (BC), 15.8x (PageRank) and 2.4x (SpMV).  

Kernel configurations – Recall that the parallelization 
templates in Figure 1 include two phases: one using thread-
based mapping and one using block-based mapping. For 

example, the dbuf-global scheme first invokes a kernel 
where the outer loop is parallelized with thread-based 
mapping, and then it invokes a kernel that uses block-based 
mapping to process the delayed buffer. Here, we discuss the 
selection of the kernel configuration used in both cases.  

For thread-based mapping, we leverage the CUDA 
occupancy calculator to determine the optimal thread-block 
size. Since the considered applications have a low register 
and shared memory utilization (and some of them do not use 
shared memory at all), the optimal block size results to be 
large in all cases. Specifically, we use 192 threads per block, 
equaling the number of cores per streaming multiprocessor 
on Kepler GPUs. We recall that in a thread-mapped 
implementation each thread is assigned one or more 
iterations of the outer loop in Figure 1(a). Hence, we 
configure the number of blocks to be run based on the block 
size, the total number of iterations to be run and the 
maximum grid configuration allowed on Kepler GPUs. 

In case of block-based mapping, each iteration of the 
outer loop is assigned to a thread-block, and threads within a 
block execute iterations of the inner loop. A small thread-
block configuration will tend to assign multiple iterations of 
the inner loop to each thread. Conversely, large blocks may 
lead to hardware underutilization, as some iterations of the 
outer loop may not present enough parallelism to fully 
exploit the GPU cores on a streaming multiprocessor. We 
recall that the value of the lbTHRES (load balancing threshold) 
parameter determines the iterations of the outer loop that are 
processed in the second, block-mapped phase of the code.  

We performed a set of experiments to determine good 
block size configurations to be used in the block-mapped 
portions of the code under different lbTHRES settings. Figure 
4 shows the results of experiments performed on SpMV using 
different block size configurations and various settings of 
parameter lbTHRES. All experiments are run on the CiteSeer 
network. We omit the dpar-naïve implementation because, 
as we will show later, it greatly underperforms the other code 
variants. According to the CUDA occupancy calculator, 
small blocks consisting of 32 threads lead to low hardware 
occupancy. Our experiments confirmed low performance 
with fewer than 32 threads per block; therefore, here we 
consider block sizes ≥ 64. As can be seen, the performance is 
insensitive to the block size but mainly affected by lbTHRES. 
Some templates perform better in the presence of smaller 
blocks, especially for small values of lbTHRES. We observed 

                    
(a)  lbTHRES = 64                                                    (b) lbTHRES = 128                                                   (c) lbTHRES = 192 

Figure 4. SpMV: Speedup of load balancing code variants over basic thread-mapped implementation under different lbTHRES settings and varying block 
sizes. The input dataset is the sparse matrix representation of the CiteSeer network. In the baseline implementation the block size is set to 192. The x-
axis shows the block sizes used by the portions of the code parallelized through block-based mapping. The naïve dynamic parallelism-based 
implementation (not shown for readability) is significantly slower than the other code variants. 



similar results on the other applications with different 
datasets. These results can be explained as follows. A block 
size larger than the value of lbTHRES may lead to hardware 
underutilization. To understand why, refer to the pseudo-
code in Figure 1. All outer loop iterations presenting an inner 
loop of size f(i) greater than lbTHRES are processed in a block-
mapped fashion. If the block size is greater than f(i), a large 
number of threads will not be assigned any work, leading to 
GPU underutilization. Therefore, in the remaining 
experiments we use small blocks consisting of 64 threads for 
the block-mapped kernels. 

Results on SSSP: We now compare the performance of 
the five parallelization templates on SSSP. We refer to the 
basic implementation described in [5], which encodes the 
graph data structure in Compressed Sparse Row (CSR) 
format (more information can be found in [5]). When a graph 
is represented in CSR format, its traversal assumes the form 
of the nested loop in Figure 1(a), where the outer loop 
iterates over the nodes in the graph, and the inner loop over 
the neighbors of each node i. In irregular graphs where the 
node outdegree (f[i]) varies significantly from node to node, 
this traversal loop is irregular. Here, we show experiments 
performed on CiteSeer. Figure 5 shows the speedup of all 
code variants over the baseline thread-mapped 
implementation; the number of nested kernel calls performed 
by the two dynamic parallelism-based solutions are reported 
on top of the bars. Due to the irregular nature of the CiteSeer 
graph, almost all code variants that include load balancing 
outperform the basic thread-mapped implementation. The 
dpar-naïve code variant is the exception: due to the overhead 
of the large number of (small) nested kernel calls performed, 
this implementation leads consistently to (often significant) 
performance degradation. The delayed buffer-based and the 
optimized dynamic parallelism-based code variants yield the 
best results, and the performance improvement depends on 
the value of the load balancing threshold, which affects the 
amount of load balancing performed. The optimal value of 
this parameter corresponds to the warp size (no 
improvements were observed for lbTHRES<32).  

To better understand these results, we used the Nvidia 
Visual Profiler to collect three performance metrics: the warp 
execution efficiency (ratio of the average active threads per 
warp to the maximum number of threads per warp on a 
streaming multiprocessor), and the global memory load and 
store efficiency (ratio of the number of requested memory 

load and store transactions to the actual number of load and 
store transactions performed - the lack of memory coalescing 
can cause more memory transactions than requested to be 
triggered). Table I shows the profiling data gathered for 
lbTHRES = 32. As can be seen, all parallelization templates but 
dpar-naïve report an increased warp efficiency compared to 
the baseline code. This indicates a better utilization of the 
available GPU cores. In addition, by processing nodes with 
low outdegrees (< lbTHRES) and nodes with high outdegrees 
separately, these code templates improve the memory load 
and store efficiency. Finally, thanks to its use of shared 
memory, dbuf-shared improves the memory coalescing over 
dbuf-global, leading to better memory efficiency. To 
conclude, our proposed parallelization templates improve 
both GPU core utilization and memory access patterns.  

Results on BC, PageRank and SpMV:  Figure 6 shows 
the performance of BC, PageRank and SpMV using various 
lbTHRES settings. Again, we report the speedup achieved by 
our code variants over a thread-mapped implementation 
without load balancing. We make the following observations. 

First, similarly to SSSP, the speedup decreases as lbTHRES 
increases. This behavior is not surprising: the load balancing 
threshold determines the number of iterations of the outer 
loop that are processed in a block-mapped fashion, thus 
reducing the warp divergence during the thread-mapped 
phase and the resulting core underutilization. In other words, 
the lower the value of lbTHRES, the more load balancing will 
take place through block-based mapping. Table II, which 
shows how the warp execution efficiency of dbuf-shared 
varies with lbTHRES, supports this observation. As can be seen, 
the lower the value of lbTHRES, the higher the warp efficiency 
(and, consequently, the GPU utilization). Note that the use of 
this parallelization template always improves the warp 
efficiency over the baseline code. We observed similar 
trends with all other parallelization templates but dpar-naïve.  

Second, dual-queue performs better than the other code 
variants only on BC. Dual-queue suffers from the overhead 
of the initial creation of the two queues. While this overhead 
is limited for small datasets (e.g. Wiki-vote used by BC), its 
negative effect on performance becomes more obvious on 
large datasets (e.g. CiteSeer used by PageRank and SpMV).  

Third, on these applications dbuf-shared performs worse 
than dbuf-global for low values of lbTHRES and reports better 
or comparable performance for lbTHRES ≥ 128. This trend can 
be explained as follows. Recall that both parallelization 
templates use a delayed buffer to identify the large iterations 
of the outer loop that must be processed in the second, block-
mapped phase. Since dbuf-global stores this buffer in global 
memory, the load gets redistributed across the thread-blocks 
during the second phase of the code (that is, the content of 

 

 
Figure 5. SSSP: Speedup of load balancing code variants over basic thread-
mapped implementation. Experiments performed on the CiteSeer dataset 
and Nvidia K20 GPU. The numbers on the bars indicate the number of 
nested kernel calls performed by dynamic parallelism-based solutions. 

TABLE I. Profiling data collected on SSSP (lbTHRES=32) 

Templates	  
Metrics	  

warp	  
efficiency	  

gld	  
efficiency	  

gst	  
efficiency	  

baseline	   35.6%	   15.8%	   3.2%	  
dual-‐queue	   74.9%	   79.1%	   4.8%	  
dbuf-‐shared	   75.7%	   94.3%	   50.4%	  
dbuf-‐global	   72.3%	   89.1%	   8.5%	  
dpar-‐naïve	   25.3%	   45.5%	   16.3%	  
dpar-‐opt	   70.2%	   63.2%	   10.9%	  

 



the delayed buffer is partitioned fairly across thread-blocks). 
However, this load redistribution across thread-blocks does 
not take place in the case of dbuf-shared, which stores the 
buffer in shared memory and performs a single kernel call. 
The probability of load imbalance across thread-blocks is 
higher for low values of lbTHRES, since in this case more work 
is added to the delayed buffer. However, when lbTHRES 
increases, less work is added to the delayed buffer, thus 
decreasing the probability of work imbalance across thread-
blocks in the second phase of the code. When the amount of 
load balancing is low, dbuf-global suffers from the overhead 
of launching the second kernel. We used profiling data to 
support this observation. Specifically, we analyzed the warp 
occupancy of these code variants (that is, the ratio of the 
average active warps per active cycle to the maximum 
number of warps supported on a multiprocessor). For small 
values of lbTHRES, dbuf-global reports a higher warp 
occupancy compared to dbuf-shared (for example, for 
lbTHRES=32, the warp occupancy of dbuf-shared and dbuf-
global is 18.3% and 26.9%, respectively), indicating a better 
hardware utilization. 

Finally, we observe that dpar-opt performs similarly to 
(or slightly worse than) dbuf-shared. The nested kernel 
handling and launch overhead outshadows the benefit of 
dynamically remapping the work spawned within nested 
kernels to the GPU hardware. 

To summarize, we make the following observations. First, 
the load balancing threshold lbTHRES is the dominant factor 
affecting the performance. Second, due to its queue 
consruction overhead, on large datasets the dual-queue 
template tend to by outperformed by the delayed-buffer-
based and the dpar-opt solutions. Third, dbuf-global avoids 
the intra-block imbalance that penalizes dbuf-shared at the 
price of an additional kernel invocation to redistribute the 
workload among blocks. The dbuf-shared template performs 
similarly to dpar-opt without requiring hardware support for 
dynamic parallelism, and usually it achieves the best 
performance. Finally, dynamic parallelism must be used 
judiciously: the naïve use of this feature can lead to a high 
number of small grid invocations and suffer from a 

significant overhead, thus killing the performance. 

C. Experiments on Recursive Algorithms 
In section II.C we have discussed three GPU 

parallelization templates for recursive applications: non-
recursive flat-parallelism, recursive-naïve and recursive-
hierarchical (Figure 3). In this section we evaluate these 
parallelization templates on three applications that operate on 
tree and graph data structures: Tree Height, Tree 
Descendants and recursive BFS. In all the related charts we 
report the speedup of the code variants based on these 
parallelization templates over the better one between 
recursive and iterative serial CPU code.  

Results on Tree Descendants/Heights: We evaluate the 
performance of Tree Descendants and Tree Heights on 
synthetic datasets. Our tree generator produces trees with 
different shapes based on three parameters: tree depth, node 
outdegree and sparsity. The sparsity parameter operates as 
follows. All non-leaf nodes have the same number of 
children, which is given by the node outdegree parameter. 
The probability ρ of the non-leaf nodes having children is 
defined as ρ = (!

!
)!"#$!%&'. Therefore, if sparsity=0 all non-

leaf nodes have children, leading to a regular tree where all 
leaf nodes have maximum depth; if sparsity=1 non-leaf 
nodes only possess a probability of ½ to have children, and 
so on. In general, larger values of the sparsity parameter lead 
to the generation of more irregular trees. 

For both algorithms, we perform two sets of experiments 
over trees with different depths. First, we set the sparsity to 0 
(regular trees) and vary the node outdegree from 32 to 512. 
This leads to trees that are regular in shape and exhibit an 
increasing level of parallelism at each node. Second, we set 
the node outdegree to 512 and vary the sparsity parameter 
from 0 to 4, thus allowing the generation of increasingly 
irregular trees. The results show that the depth parameter has 
no significant effect on performance because it does not 
change the irregularity and sparsity of the trees. 

Figures 7(a) and (b) show the results reported by the Tree 
Descendants algorithm discussed in Section II.C (pseudo-
code in Figure 3) on regular and irregular trees, respectively. 
Figure 7(c) shows the following profiling information for 
each code variant: warp utilization, number of dynamic 
kernel calls and number dbuf-global of atomic operations.  

As can be seen in Figures 7(a) and (c), on regular trees 
the recursive-naïve implementation leads to significant 
performance degradation over the serial CPU code (and the 

TABLE II. Warp execution efficiency (dbuf-shared) 
Applications	  

lbTHRES	  
32	   64	   256	   1024	   baseline	  

SSSP	   75.6%	   71.9%	   45.3%	   37.2%	   35.6%	  
BC	   75.8%	   56.7%	   17.1%	   10.8%	   10.3%	  

PageRank	   91.5%	   87.0%	   63.4%	   50.9%	   50.8%	  
SpMV	   94.4%	   82.3%	   71.5%	   51.5%	   51.0%	  

 

   
                                    (a) BC                                                             (b) PageRank                                                           (c) SpMV 
Figure 6. Speedup of the load balancing code variants over a basic thread-mapped implementation using various lbTHRES. settings. For BC, the dataset is 
the wiki-vote. PageRank and SpMV are run on the CiteSeer network dataset. The naïve dynamic parallelism-based implementation (not shown for 
readability) is significantly slower than the other code variants. 



other GPU code variants) across all datasets. This is due to 
the large number of “small” nested kernel invocations as 
well as the low warp utilization of this code variant. The flat-
parallelism template reports a decent speedup compared to 
the serial code when enough parallel work is spawned; 
however, due to the required atomic operations, its 
performance saturates for node outdegrees > 64. Despite the 
lower warp utilization, the recursive-hierarchical code 
variant outperforms the flat-parallelism template. This is due 
to the significant reduction in the number of atomic 
operations compared to the flat code.  

As can be seen in Figures 7(b) and (c), the sparsity 
parameter does not significantly affect the performance and 
warp utilization of the flat-parallelism code variant. On the 
other hand, the performance of the recursive-hierarchical 
code decreases as the sparsity increases. As can be seen in 
Figure 7(c), in this case the more irregular structure of the 
tree has a negative effect on the warp utilization, causing this 
performance degradation. 

Figure 8 shows the performance and profiling results 
reported by the Tree Heights algorithm on the same 
synthetically generated trees. We define the tree height in a 
recursive fashion as follows. Each leaf node within the tree is 

assigned height 1, and the height of a non-leaf node is 
defined as 1 + the maximum height across its children. 

The recursive-naïve code variant achieves again poor 
performance across all datasets due to its low warp 
utilization and large number of small nested kernel launches. 
As can be seen in Figures 8(a) and (c), on regular trees the 
performance of the recursive-hierarchical kernel increases 
with the node outdegree. In fact, the node outdegree affects 
the amount of parallel work per node, and, as a consequence, 
the GPU utilization. This is confirmed by the warp utilization 
data. In addition, the recursive-hierarchical code variant 
achieves better performance than the flat-parallelism one for 
large node outdegrees. This is due to its significantly reduced 
number of atomic operations. As in Tree Descendants, the 
atomic operations cause the saturation of the performance of 
flat-parallelism beyond a node outdegree of 128. 

As shown in Figures 8(b) and (c), when the sparsity 
increases, the behavior of Tree Heights is very similar to that 
of Tree Descendants. Specifically, as the tree becomes more 
irregular, the warp divergence causes the warp utilization of 
the hierarchical kernel to drop significantly; on the other 
hand, when the tree gets sparser, the atomic operations 
required by the flat-parallelism kernel are reduced and its 

 
(a) Sparsity = 0 

 

 
(b) Node outdegree = 512 

 

Out-‐	  
degree	  

Flat-‐Kernel	   Rec-‐naïve	   Rec-‐hier	  
Warp	   Atomic	   Warp	   KCalls	   Warp	   Atomic	   KCalls	  

32	   94.2%	   0.1m	   32%	   1.0k	   67.1%	   0.001m	   33	  
64	   95.6%	   0.8m	   40.9%	   4.1k	   68.6%	   0.004m	   63	  
128	   96.2%	   6.3m	   59.8%	   16k	   70.3%	   0.017m	   129	  
256	   96.3%	   50m	   67.8%	   66k	   76.1%	   0.065m	   257	  
512	   96.3%	   403m	   74.6%	   263k	   86.2%	   0.263m	   513	  

Sparsity	   	   	  
0	   96.3%	   403m	   74.6%	   263k	   86.2%	   0.263m	   513	  
1	   96.3%	   98m	   72.8%	   64k	   81.6%	   0.129m	   250	  
2	   96.3%	   26m	   69.8%	   17k	   77.1%	   0.068m	   132	  
3	   96.2%	   6m	   66.4%	   4.4k	   75%	   0.035m	   65	  
4	   95.9%	   1.6m	   66.2%	   1.1k	   73.9%	   0.018m	   35	  

 
                             (c) Profiling data 

Figure 8. Tree heights on synthetic trees with depth 4. Speedup of GPU 
code variants over iterative serial CPU code when (a) sparsity = 0 and 
(b) node outdegree = 512; (c) corresponding profiling information.  The 
y-axis of charts (a) and (b) is in log10 scale: the values on top of the bars 
indicate the exact speedup numbers.  
 

 
(a) Sparsity = 0 

 

 
                            (b) Node outdegree = 512 

 

Out-‐	  
degree	  

Flat-‐Kernel	   Rec-‐naïve	   Rec-‐hier	  
Warp	   Atomic	   Warp	   KCalls	   Warp	   Atomic	   KCalls	  

32	   92.3%	   0.10	  m	   32.0%	   1.0k	   68.0%	   0.001m	   33	  
64	   93.5%	   0.79	  m	   40.8%	   4.1k	   64.6%	   0.004m	   63	  
128	   94.3%	   6.32	  m	   59.7%	   16k	   65.2%	   0.016m	   129	  
256	   94.4%	   50.4	  m	   67.6%	   66k	   72.2%	   0.065m	   257	  
512	   94.4%	   403	  	  m	   74.4%	   263k	   84.4%	   0.262m	   513	  

Sparsity	   	   	  
0	   94.4%	   403	  	  m	   74.4%	   263k	   84.4%	   0.262m	   513	  
1	   94.4%	   98.6	  m	   73.0%	   64k	   79.1%	   0.129m	   250	  
2	   94.4%	   26.0	  m	   70.4%	   17k	   71.9%	   0.068m	   132	  
3	   94.3%	   6.70	  m	   67.5%	   4.4k	   69.7%	   0.035m	   65	  
4	   94%	   1.68	  m	   66.0%	   1.1k	   69.1%	   0.018m	   35	  

 
            (c) Profiling data 

Figure 7. Tree descendants on synthetic trees with depth 4. Speedup of 
GPU code variants over iterative serial CPU code when (a) sparsity = 0 
and (b) node outdegree = 512; (c) corresponding profiling information.  
The y-axis of charts (a) and (b) is in log10 scale: the values on top of the 
bars indicate the exact speedup numbers.  



speedup stays stable, making the flat kernel preferable to the 
recursive hierarchical one.  

Results on recursive BFS: We now want to evaluate our 
parallelization templates on a graph algorithm and compare 
the results with those obtained on the two tree traversal 
applications described above. To this end, we apply our 
parallelization templates to BFS. We perform experiments 
on randomly generated graphs consisting of 50,000 nodes. In 
this case, the node outdegree is uniformly distributed within 
a variable range (x-axis of Figure 9). This leads to a number 
of edges varying from 1.6 to about 27 million, while the 
number of levels in the graphs varies from 4 to 5. Our flat 
GPU implementation is a thread-mapped parallelization of 
level-based BFS traversal [5]. Our recursive implementations 
are unordered [11]: the traversal of a node causes the 
recursive traversal of its neighbors as long as their level 
decreases. This implementation is not work-efficient and, 
due to stack serialization, causes serial CPU traversal to 
happen in depth-first (rather than in breadth-first) fashion. 
Nevertheless, on CPU the recursive implementation 
outperforms the iterative one by a factor varying from 1.25x 
to 3.3x depending on the graph size. On GPU, the flat code 
variant outperforms the CPU recursive implementation by a 
factor 11-14x, whereas both recursive implementations lead 
to a considerable slowdown (in the order of 700-14,000x). 
This behavior significantly deviates from what observed on 
tree traversal algorithms and can be explained as follows. 
First, in this case the flat parallel code variant does not 
require atomic operations, while the recursive code variants 
do. Second, the considered tree algorithms are work efficient: 
they traverse each node exactly once. Since in a graph 
multiple nodes can share neighbors, this property does not 
hold for unordered BFS traversals.  

In Figure 9, we compare the results obtained applying the  
two recursive GPU parallelization templates. In each case, 
we also test using multiple streams per thread-blocks, thus 
allowing concurrent execution of nested kernel calls 
originated from the same block. We observe performance 
improvements only when one additional stream per thread-
block is created (more streams cause overhead without 
leading to significant parallelization benefits). In Figure 9, 
we use the suffix “stream” to refer to code variants using an 
additional stream per block. We make the following 
observations. When only the default stream is used, the 
hierarchical is again preferable to the naïve implementation. 
On the other hand, while multiple stream support helps the 
naïve implementation, it is detrimental for the hierarchical 
code variant. These results can be explained as follows. In 
the naïve case, the parallel execution of small nested kernels 
allows better GPU utilization and reduction in the number of 
kernel calls (by anticipating the processing of nodes closer to 
the root in a BFS fashion, the traversal becomes more work 
efficient). The hierarchical implementation, however, allows 
parallel execution of kernels even in the absence of 
additional streams, since kernels spawned by different 
thread-blocks can be executed concurrently. In this situation, 
the stream handling overhead is not overshadowed by a 
better GPU utilization, and the parallel execution of many 
kernels can make the traversal less work-efficient, especially 

in case of large node outdegrees. 
Finally, we have tested the use of multiple streams on 

tree traversal. This optimization increases the performance of 
the naïve recursive parallelization template. However, the 
performance improvement is in this case more moderate than 
in graph traversal. Multiple streams allow parallel execution 
of kernel launches and better GPU utilization. However, they 
do not make the tree traversal more work efficient (every 
node is processed only once independent of the number of 
CUDA streams used). The use of multiple streams does not 
have a significant effect on the hierarchical recursive 
parallelization template, which has a good GPU utilization 
even with a single stream and remains the preferred solution.  

IV. RELATED WORK 
As GPUs have become more general purpose, the interest 

of the research community has moved toward effectively 
deploying irregular applications on these many-core 
platforms. In particular, there have been several efforts 
focusing on the acceleration of graph processing algorithms 
on Nvidia GPUs [3, 5, 12-24]. Harish and Narayanan [5] 
proposed a basic implementation suited to regular, dense 
graphs. On sparse graphs, better results have been reported in 
subsequent efforts, which covered a variety of algorithms 
(breadth-first search [12-18], single-source shortest path [16-
18, 20], minimum spanning tree [17, 19], Delaunay mesh 
refinement [16-19], points-to analysis [16, 18, 19, 21], 
strongly connected components [22] and survey propagation 
[16-19]). Among these, Hong et al. [20] proposed a virtual 
warp-centric programming model with more general 
applicability; Burtscher et al. [16-19] and Che et al. [23] 
proposed benchmark suites of graph algorithms and 
identified computational patterns common to different graph 
applications. In this work we target irregular applications 
beyond graph algorithms. In addition, rather than fine tuning 
specific applications, we aim to provide and evaluate 
parallelization templates of general applicability. 

A few research efforts have addressed the problem of 
nested parallelism on SIMD architectures. Blelloch and 
Sabot [25] have proposed flattening transformation 
techniques aimed to vectorize programs with nested data 
parallelism, so to allow their deployment onto hardware 
designed to accommodate a single level of parallelism (e.g., 
SIMD processors). They validated their compilation 

 
Figure 9. Recursive BFS computation: slowdown of the GPU code 
variants over recursive serial CPU code. The experiments are performed 
on randomly generated graphs consisting of 50,000 nodes. The node 
outdegree is randomly generated within the indicated range. 



techniques on their proposed NESL language [26]. More 
recently, Bergstrom and Reppy [27] ported NESL to GPUs. 
In particular, they relied on the NESL compiler for the 
flattening transformation and explored the design of data 
structures and primitives (e.g., element-wise instructions, 
scans, reductions, permutations) that enable good 
performance on GPU. Their proposed flattening techniques 
can be used to deploy recursive applications on GPUs 
without support for nested kernel invocations (in other 
words, to produce flat parallelization templates).  

Recent studies have analyzed the strengths and 
limitations of Nvidia’s dynamic parallelism. Yang and Zhou 
[1] have proposed compiler techniques to implement nested-
thread level parallelism on algorithms operating on small 
datasets where dynamic parallelism would perform poorly. 
Their solution, however, would be less effective on large 
datasets, which we consider in this work. The effectiveness 
of dynamic parallelism on larger datasets has been 
demonstrated on different applications: clustering algorithms 
[28], computation of the Mandelbrot set [29] and a particle 
physics simulation [30]. A recent study [2] has proposed a 
characterization of dynamic parallelism on unstructured 
applications. In particular, the proposed characterization 
focus on modeling the effect of control and memory access 
patterns on the performance. Differently from this work, the 
considered applications are mostly parallelized as in our 
naïve recursive parallelization template.  

V. CONCLUSION 
In this paper we have studied two computational patterns 

exhibiting nested parallelism: irregular nested loops and 
parallel recursive computations. We have proposed several 
parallelization templates to better distribute the work to the 
GPU hardware resources, and we have evaluated the use of 
nested parallelism on the considered computational patterns. 
Our experiments show that, by carefully selecting the 
parallelization template, applications with irregular nested 
loops can achieve a 2-6x speedup over basic thread-mapped 
GPU implementations. The use of nested parallelism on 
recursive tree traversal can lead to significant speedup (up to 
a 15-24x factor) over iterative serial CPU code, and can be 
preferable to the parallelization of iterative versions of these 
algorithms. However, the benefits of nested parallelism on 
recursive applications operating on array and graph data 
structures are still unclear, especially when recursive code 
variants require synchronization through atomic operations. 
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