
Nested Parallelism on GPU: Exploring Parallelization Templates
for Irregular Loops and Recursive Computations

Da Li, Hancheng Wu, Michela Becchi
Dept. of Electrical and Computer Engineering

University of Missouri - Columbia
da.li@mail.missouri.edu, hancheng.wu@mail.missouri.edu, becchim@missouri.edu

Abstract—The effective deployment of applications exhibiting
irregular nested parallelism on GPUs is still an open problem.
A naïve mapping of irregular code onto the GPU hardware
often leads to resource underutilization and, thereby, limited
performance. In this work, we focus on two computational
patterns exhibiting nested parallelism: irregular nested loops
and parallel recursive computations. In particular, we focus on
recursive algorithms operating on trees and graphs. We
propose different parallelization templates aimed to increase
the GPU utilization of these codes. Specifically, we investigate
mechanisms to effectively distribute irregular work to
streaming multiprocessors and GPU cores. Some of our
parallelization templates rely on dynamic parallelism, a feature
recently introduced by Nvidia in their Kepler GPUs and
announced as part of the OpenCL 2.0 standard. We propose
mechanisms to maximize the work performed by nested
kernels and minimize the overhead due to their invocation.

Our results show that the use of our parallelization
templates on applications with irregular nested loops can lead
to a 2-6x speedup over baseline GPU codes that do not include
load balancing mechanisms. The use of nested parallelism-
based parallelization templates on recursive tree traversal
algorithms can lead to substantial speedups (up to 15-24x) over
optimized CPU implementations. However, the benefits of
nested parallelism are still unclear in the presence of recursive
applications operating on graphs, especially when recursive
code variants require expensive synchronization. In these cases,
a flat parallelization of iterative versions of the considered
algorithms may be preferable.

I. INTRODUCTION
In the last few years, the GPU architecture has

increasingly become more general purpose. Nvidia GPUs,
for example, have recently seen the inclusion of caches in
their memory hierarchy, the progressive relaxation of their
memory coalescing rules and the introduction of more
efficient atomic and floating point operations. More recently,
Nvidia has introduced the ability to perform nested kernel
invocations in their Kepler GPUs. This feature, also known
as dynamic parallelism, has been added to the OpenCL 2.0
standard and will soon be released in AMD GPUs as well.

These architectural and programmability enhancements
have favored the adoption of GPUs not only as accelerators
of regular applications (such as those operating on dense
matrices and vectors), but also of irregular ones. Irregular
applications, often operating on graph and tree data
structures, are characterized by irregular and unpredictable
memory access patterns, frequent control flow divergence
and a degree of parallelism that is known only at runtime.

While dynamic parallelism has the potential for
increasing the GPU programmability and allowing support

for recursive algorithms, the effective use of this feature –
both as a load balancing mechanism and as an enabler of
recursive algorithms – must still be understood. First, it is
important to determine which classes of applications may
benefit from the use of dynamic parallelism rather than from
a flat parallelization of the code. Second, dynamic
parallelism in CUDA has fairly elaborated semantics, and the
programmer is still left with the burden of understanding its
memory and execution model.

In this work we focus on irregular applications exhibiting
nested parallelism. Specifically, we consider two categories
of computational patterns: parallelizable irregular nested
loops and parallelizable recursive codes. In the former, the
amount of work associated to the iterations of inner loops
can vary across the iterations of their outer loops. In the
latter, recursive calls may spawn different amount of parallel
work. As a consequence of this uneven work distribution,
simple parallelization templates handling all the loop
iterations or recursive calls in the same way may lead to
hardware underutilization. On the other hand, adding simple
load balancing mechanisms to the parallelization may allow
a better mapping of work to hardware and, consequently, it
may improve the application performance. Here, we focus on
simple load balancing schemes and study the use of dynamic
parallelism as a means to achieve better hardware utilization.
In particular, we design parallelization templates aimed to
maximize the work performed by nested kernels and
minimize their overhead. Our parallelization techniques can
be incorporated in compilers, thus freeing the programmer
from the need to worry about the mapping of work to the
hardware and to understand the complex semantics of GPU
dynamic parallelism.

In this work, we make the following contributions:
• We propose and study several parallelization templates to

allow the effective deployment on GPU of iterative and
recursive computational patterns that present uneven work
distribution across iterations and recursive calls.

• We explore the use of nested parallelism on GPU in the
context of two computational patterns: irregular nested
loops and recursive computations.

• We evaluate the proposed parallelization templates and the
use of dynamic parallelism on an irregular matrix
computation (SpMV), four graph algorithms (SSSP,
betweenness centrality, PageRank and BFS), and two tree
traversal algorithms (tree descendants and tree height).

II. PARALLELIZATION TEMPLATES

A. Motivation
GPUs present two levels of hardware parallelism:

streaming multiprocessors and CUDA cores in Nvidia’s
parlance, and SIMD units and stream processors in AMD’s.
Commonly used programming models for many-core
processors, such as CUDA and OpenCL, expose this two-
level hardware parallelism to the programmer through a two-
level multithreading model: at a coarse grain, CUDA thread-
blocks and OpenCL work-groups are mapped onto streaming
multiprocessors and SIMD units; at a fine grain, CUDA
threads and OpenCL work-items are mapped onto cores and
stream processors. An additional level of parallelism is
provided by the opportunity to launch multiple kernels
concurrently through CUDA streams and OpenCL command
queues. In addition, Kepler GPUs allow nested kernel
invocations; this functionality, called dynamic parallelism,
has recently been announced as part of the OpenCL 2.0
standard and will soon be included in AMD devices. In the
remainder of this paper, we will use CUDA terminology.

Despite the presence of hardware and software support
for nested parallelism, finding the optimal mapping of
algorithms exhibiting multiple levels of parallelism onto
GPUs is not a trivial problem. Especially in the presence of
irregular computation, a naïve mapping of irregular code
onto the GPU hardware can lead to resource underutilization
and, thereby, limited performance. Besides allowing
recursion, dynamic parallelism has the potential for enabling
load balancing and improving the hardware utilization. This
is because nested kernels, each with a potentially different
degree of parallelism, are dynamically mapped to the GPU
cores by the hardware scheduler according to the runtime
utilization of the hardware resources. Unfortunately, the
effective use of this feature has yet to be understood: the
invocation of nested kernels can incur significant overhead
(due to parameter parsing, queueing, and scheduling) [1, 2]
and may be beneficial only if the amount of work spawned is
substantial.

In this work, we consider two categories of
computational patterns involving nested parallelism:
applications containing parallelizable irregular nested loops
(Section II.B) and recursive algorithms (Section II.C). We
propose and analyze different parallelization templates aimed
to improve the hardware utilization and the performance –
some of them leveraging the dynamic parallelism feature.
Our goal is to propose and evaluate simple and yet effective
mechanisms that can be incorporated in GPU compilers.

B. Irregular Nested Loops
The hierarchical nature of the GPU architecture leads to

two logical ways to map parallel loops onto the hardware:
different loop iterations may be mapped either to GPU cores
(thread-based mapping) or to streaming multiprocessors
(block-based mapping) [3]. In the former case, loop
iterations are assigned to threads; in the latter, they are
assigned to thread-blocks. For brevity, we will use the terms
thread- or block-mapped loops and kernels to indicate loops
and kernels parallelized with one of these two approaches. In
the presence of loop nesting, the mapping of inner loops
depends on the mapping performed on the outer loops. For
example, thread-based mapping on an outer-loop will cause
serialization of all inner loops, while block-based mapping

on an outer-loop will allow thread-based mapping on the
inner loops. In addition, stream-based mapping (whereby
different iterations of the loop are assigned to different
CUDA streams) offers an additional degree of freedom to the
parallelization process. During code generation, compiler
analysis is required to identify the type of GPU memory
where each variable must be stored and the need for
synchronization and reduction operations to access shared
variables. For example, in the presence of a block-mapped
outer loop and a thread-mapped inner loop, variables defined
inside the outer loop but outside the inner loop will be shared
by all threads in a block. Therefore, these variables will need
to be stored in shared memory, and their access by threads
within the inner loop will require synchronization.

Simply relying on thread- and block-based mapping in
the parallelization process is acceptable for regular nested
loops, wherein the number of iterations of an inner loop does
not vary across the iterations of the outer loop. However, this
simple solution may lead to inefficiencies when applied to
irregular nested loops, for which this property does not hold.
Irregular nested loops have the structure of the code in
Figure 1(a). As can be seen, the number of iterations of the
inner loop is a function of i, the outer loop variable. In the
case of irregular nested loops, the use of thread-based
mapping on the outer-loop may cause warp divergence (i.e.,
different threads are assigned different amounts of work),
while the use of block-based mapping will lead to uneven
block utilization, which in turn may cause GPU
underutilization. Load balancing of irregular nested loops is

Figure 1. Parallelization templates for irregular nested loops.

one of the use cases for GPU dynamic parallelism. By
launching nested grids of variable size, dynamic parallelism
has the potential for improving the GPU utilization.
However, despite its overhead has been reduced in recent
CUDA distributions, the effective use of this feature depends
on the amount of work spawned in each kernel invocation.

We consider different parallelization templates aimed to
perform load balancing in the presence of irregular nested
loops. The proposed code variants trade off the advantages
and disadvantages of thread- and block-based mapping,
respectively. In particular, in Figure 1(b-e) we illustrate the
load-balancing variants of the thread-based mapping
template. Those variants rely on a load balancing threshold
parameter (lbTHRES). The dual-queue template in Figure 1(b)
divides the elements processed in the outer loop in two
queues depending on the number of iterations they require in
the inner-loop and processes those queues separately using
thread- and block-based mapping, thus reducing the warp
divergence of the former and the block-level work-imbalance
of the latter. The delayed-buffer template in Figure 1(c)
delays the execution of large iterations of the outer loop by
queuing them in a buffer and then processing them using
block-based mapping. We consider two versions of this
template: one that stores the buffer in global memory (dbuf-
global), thus requiring two kernel calls and allowing
redistributing the work among thread-blocks in the second
phase; the other that stores the buffer in shared memory
(dbuf-shared), thus requiring a single kernel invocation but
possibly leading to uneven work distribution among thread-
blocks. The naïve dynamic parallelism (dpar-naïve) template
in Figure 1(d) invokes a nested call for each “large” iteration
(and performs the dynamic parallelism calls at a thread
level). Finally, the optimized dynamic parallelism template
(dpar-opt) in Figure 1(e) delays spawning nested calls to a
second-phase; by invoking a single dynamic parallelism call
for each thread-block, this code variant spawns fewer and
larger kernels.

We note that GPU dynamic parallelism has fairly
elaborate semantics. For example, nested kernel calls are
performed by threads, but their synchronization happens at
the level of thread-blocks; registers and shared memory
variables are not visible to nested kernels; memory
coherence and consistency between parent and child kernels
require explicit synchronization; and concurrent execution
requires the use of CUDA streams. Fortunately, the proposed
parallelization templates for nested loops are simple and can
be incorporated in a compiler, allowing the programmer to
write only the simplified code in Figure 1(a). The automatic
generation of the code variants corresponding to the

proposed parallelization templates by a compiler will
therefore hide from the programmer not only the two-level
hardware and software organization of the GPU, but also the
execution and memory model of GPU dynamic parallelism.

Several factors may impact the effectiveness of the
proposed parallelization templates. For example, the optimal
load balancing threshold (lbTHRES) will depend on the
underlying dataset and algorithm. In addition, the
performance of each parallelization template will depend on
the characteristics of the algorithm (that is, the nature of the
work in Figure 1). We explore these aspects in our
experimental evaluation (Section III.B).

C. Recursive Functions
Recursive functions are a second use case for dynamic

parallelism. The current CUDA distribution contains a few
examples of recursive kernels, some of which, however,
perform worse than equivalent, non-recursive codes.
QuickSort is one of these examples. The CUDA SDK
contains two implementations of QuickSort, both relying on
dynamic parallelism: Simple QuickSort and Advanced
QuickSort. We compared these two recursive codes with a
non-recursive MergeSort kernel, also part of the CUDA SDK.
Figure 2 shows the performance results obtained by running
these sort implementations on arrays whose size varies from
300 thousand to 2 million elements. The performance of the
recursive implementation depends on the setting of the
recursive depth parameter, which allows trading off the load
balancing effect of dynamic parallelism and its nested kernel
call overhead. In fact, when the recursive depth limit is
reached, Simple and Advanced QuickSort invoke a flat
kernel (Selection and Bitonic Sort, respectively) to handle
the remaining subarrays. As can be seen, while Advanced
QuickSort outperforms Simple QuickSort, the best results
are achieved by the non-recursive MergeSort kernel on all
datasets. To conclude, while QuickSort is an interesting use
case for dynamic parallelism, the overhead of the nested
kernel calls and their need for synchronization makes a non-
recursive GPU implementation preferable to a recursive one
even in the presence of more optimized and complex code.

We aim to understand in which situations implementing
recursive kernels using dynamic parallelism is preferable to
non-recursive GPU variants of the algorithms considered. To
be beneficial, the nested kernel invocations must spawn a
significant amount of parallel work. Fortunately, parallel
algorithms operating on trees and graphs often perform
traversals over multiple paths or branches, and such
traversals can be executed in parallel. These algorithms can
therefore present a substantial amount of parallelism on large
datasets. In addition, in the presence of irregular graphs and
trees, the dynamic invocation of multiple, differently
configured grids may lead to better load balancing of the
parallel work and higher GPU utilization.

Again, our goal is to propose parallelization templates
that can be incorporated in a compiler, so as to free the
programmer from the need to write parallel recursive
functions optimized for the GPU hardware hierarchy. In
addition, we want to allow the generation of GPU code also
for devices that do not support nested kernel invocations. To

Figure 2: Execution time of sort algorithms (y-axis in log10 scale)

this end, whenever possible, we extract an iterative version
of the algorithm using mechanisms such as tail recursion
elimination and autoropes [4] (the latter applicable to tree
traversal algorithms). We then parallelize the iterative
version of the code using thread- or block-based mapping
(flat parallelism) and the recursive version of the code using
different hardware mapping options.

As illustration, we consider the recursive computation of
the number of descendants in a tree. Figure 3(a) shows a
serial, recursive version of the algorithm. This code assumes
that the descendants array, which stores the number of
descendants of all nodes, is initialized to all 1s (that is, every
node is a descendant of itself). The iterative version of the
code in Figure 3(b) can be obtained by applying recursion
elimination techniques. The flat kernel in Figure 3(c)
parallelizes the iterative version of the code using thread-
based mapping. We consider two parallel recursive code
variants. The naïve version in Figure 3(d) parallelizes the
recursive code over the children of the current node using
thread-based mapping; each thread can spawn a parallel
kernel consisting of a single thread-block. The hierarchical
version in Figure 3(e) performs block-based parallelization
of the recursive code over the children of the current node
and thread-based parallelization over its grandchildren. The
nested kernel invocations in this case happen at the thread-
block level, and spawn hierarchical grids of threads. We
perform recursion on the children of the current node.
Recursion on the grandchildren would also be possible, but
would cause more nested kernels to be spawned (thus
degrading performance). Again, our goal is for the
programmer to provide only the code in Figure 3(a):
template-based parallelization can free the programmer from
dealing with the semantics of nested parallelism for GPUs
and the hierarchical hardware organization of these devices.

In Section III.C, we evaluate the proposed parallelization
template on different recursive algorithms.

III. EXPERIMENTAL EVALUATION

A. Experimental Setup
Hardware and Software Setup: We run all our

experiments on a server equipped with a Xeon E5-2620 CPU
and an Nvidia K20 GPU. The machine uses CentOS release
6.4. We compiled and run our code using gcc v4.4.7 and
CUDA v6. We used Nvidia Visual Profiler to collect the
profiling data presented in our analysis. Each data point is
computed by averaging the kernel execution time reported
over ten runs.

Benchmark Applications: We evaluated the
performance of the proposed parallelization templates on
seven applications falling in two categories: algorithms
including irregular nested loops (SSSP, BC, PageRank,
SpMV) and recursive applications (tree descendants, tree
heights and BFS). Whenever available, we used open-source
implementations of these applications as baselines.
• Single-Source Shortest Path (SSSP): For SSSP, we
used the thread-mapped implementation described in [5] as
baseline. SSSP is a memory intensive application with
scattered memory accesses.

• Betweenness Centrality (BC): A node’s BC is an
indicator of its centrality in a network, and its value is equal
to the number of shortest paths from all nodes to all others
that pass through that node. Our parallel implementation is
based on [6] and operates in two phases. First, it constructs
the shortest paths tree using BFS (we consider unweighted
graphs); second, it computes the BC value by traversing the
shortest path tree. Both phases present irregular nested loops
and scattered memory accesses.
• PageRank: PageRank is a popular graph analysis
algorithm to rank web pages. We consider the GPU
implementation described in [7] as a reference. This
algorithm contains a parallelizable, irregular nested loop:
each iteration of the outer loop processes a different webpage
(node in a graph); the inner loop collects ranks from the
neighbors of the considered node.
• Sparse Matrix-Vector multiplication (SpMV): SpMV
[8] calculates the product of a sparse matrix and a dense
vector, and is an important building block for diverse
applications in scientific computing, financial modeling and
information retrieval. Since the sparse matrix is represented
in Compressed Sparse Row format, the nested loop within
the matrix multiplication algorithm is irregular.

Figure 3. Application of different parallelization templates for recursive
algorithms to the computation of tree descendants.

• Tree Descendants/Heights: Tree Descendants and Tree
Heights are tree traversal algorithms that calculate the
number of descendants and the heights of all nodes in a tree.
Figure 3 shows the pseudo-code of our flat and recursive
implementations of tree traversal; we have generated similar
code for tree height.
• Breadth First Search (BFS): For BFS, we used the
thread-mapped implementation described in [5] as code
variant exhibiting flat parallelism. This implementation is
work-efficient and traverses the graph level by level. Our
recursive code recurses over the neighbors of each node.
Since the scheduling of parallel recursive calls is non-
deterministic, in our recursive code variants each node can
be traversed multiple times provided that its level decreases
at each traversal. In addition, since two nodes in a graph may
have overlapping neighborhoods, the recursive
implementations require atomic operations.

Datasets: For SSSP, PageRank and SpMV, we use
CiteSeer, a paper citation network from the DIMACS
implementation challenges [9]. CiteSeer has about 434
thousand nodes, 16 million edges and a node outdegree that
varies from 1 to 1,188 across the graph (with an average of
73.9). For BC we use Wikipedia’s who-votes-on-whom
network (Wiki-vote) [10], a small-world network consisting
of about 7 thousand nodes, 100 thousand edges and a node
outdegree that varies from 0 to 893 across the graph (with
an average of 14.6.9). For recursive algorithms, we use
synthetic datasets as described in Section III.C.

B. Experiments on Irregular Nested Loops Algorithms
In this section, we first discuss the selection of the kernel

configurations used in our experiments; we then illustrate the
rationale of our experiments by presenting some results on
SSSP; and we finally complete our discussion by comparing
the results reported on PageRank, BC and SpMV.

All the charts presented in this section report the speedup
of the code variants derived from the use of the
parallelization templates in Figure 1 over a baseline
implementation that uses thread-mapping in the outer loop
and no load balancing. The baseline GPU implementations
achieve the following speedups over serial CPU code: 8.2x
(SSSP), 2.5x (BC), 15.8x (PageRank) and 2.4x (SpMV).

Kernel configurations – Recall that the parallelization
templates in Figure 1 include two phases: one using thread-
based mapping and one using block-based mapping. For

example, the dbuf-global scheme first invokes a kernel
where the outer loop is parallelized with thread-based
mapping, and then it invokes a kernel that uses block-based
mapping to process the delayed buffer. Here, we discuss the
selection of the kernel configuration used in both cases.

For thread-based mapping, we leverage the CUDA
occupancy calculator to determine the optimal thread-block
size. Since the considered applications have a low register
and shared memory utilization (and some of them do not use
shared memory at all), the optimal block size results to be
large in all cases. Specifically, we use 192 threads per block,
equaling the number of cores per streaming multiprocessor
on Kepler GPUs. We recall that in a thread-mapped
implementation each thread is assigned one or more
iterations of the outer loop in Figure 1(a). Hence, we
configure the number of blocks to be run based on the block
size, the total number of iterations to be run and the
maximum grid configuration allowed on Kepler GPUs.

In case of block-based mapping, each iteration of the
outer loop is assigned to a thread-block, and threads within a
block execute iterations of the inner loop. A small thread-
block configuration will tend to assign multiple iterations of
the inner loop to each thread. Conversely, large blocks may
lead to hardware underutilization, as some iterations of the
outer loop may not present enough parallelism to fully
exploit the GPU cores on a streaming multiprocessor. We
recall that the value of the lbTHRES (load balancing threshold)
parameter determines the iterations of the outer loop that are
processed in the second, block-mapped phase of the code.

We performed a set of experiments to determine good
block size configurations to be used in the block-mapped
portions of the code under different lbTHRES settings. Figure
4 shows the results of experiments performed on SpMV using
different block size configurations and various settings of
parameter lbTHRES. All experiments are run on the CiteSeer
network. We omit the dpar-naïve implementation because,
as we will show later, it greatly underperforms the other code
variants. According to the CUDA occupancy calculator,
small blocks consisting of 32 threads lead to low hardware
occupancy. Our experiments confirmed low performance
with fewer than 32 threads per block; therefore, here we
consider block sizes ≥ 64. As can be seen, the performance is
insensitive to the block size but mainly affected by lbTHRES.
Some templates perform better in the presence of smaller
blocks, especially for small values of lbTHRES. We observed

(a) lbTHRES = 64 (b) lbTHRES = 128 (c) lbTHRES = 192

Figure 4. SpMV: Speedup of load balancing code variants over basic thread-mapped implementation under different lbTHRES settings and varying block
sizes. The input dataset is the sparse matrix representation of the CiteSeer network. In the baseline implementation the block size is set to 192. The x-
axis shows the block sizes used by the portions of the code parallelized through block-based mapping. The naïve dynamic parallelism-based
implementation (not shown for readability) is significantly slower than the other code variants.

similar results on the other applications with different
datasets. These results can be explained as follows. A block
size larger than the value of lbTHRES may lead to hardware
underutilization. To understand why, refer to the pseudo-
code in Figure 1. All outer loop iterations presenting an inner
loop of size f(i) greater than lbTHRES are processed in a block-
mapped fashion. If the block size is greater than f(i), a large
number of threads will not be assigned any work, leading to
GPU underutilization. Therefore, in the remaining
experiments we use small blocks consisting of 64 threads for
the block-mapped kernels.

Results on SSSP: We now compare the performance of
the five parallelization templates on SSSP. We refer to the
basic implementation described in [5], which encodes the
graph data structure in Compressed Sparse Row (CSR)
format (more information can be found in [5]). When a graph
is represented in CSR format, its traversal assumes the form
of the nested loop in Figure 1(a), where the outer loop
iterates over the nodes in the graph, and the inner loop over
the neighbors of each node i. In irregular graphs where the
node outdegree (f[i]) varies significantly from node to node,
this traversal loop is irregular. Here, we show experiments
performed on CiteSeer. Figure 5 shows the speedup of all
code variants over the baseline thread-mapped
implementation; the number of nested kernel calls performed
by the two dynamic parallelism-based solutions are reported
on top of the bars. Due to the irregular nature of the CiteSeer
graph, almost all code variants that include load balancing
outperform the basic thread-mapped implementation. The
dpar-naïve code variant is the exception: due to the overhead
of the large number of (small) nested kernel calls performed,
this implementation leads consistently to (often significant)
performance degradation. The delayed buffer-based and the
optimized dynamic parallelism-based code variants yield the
best results, and the performance improvement depends on
the value of the load balancing threshold, which affects the
amount of load balancing performed. The optimal value of
this parameter corresponds to the warp size (no
improvements were observed for lbTHRES<32).

To better understand these results, we used the Nvidia
Visual Profiler to collect three performance metrics: the warp
execution efficiency (ratio of the average active threads per
warp to the maximum number of threads per warp on a
streaming multiprocessor), and the global memory load and
store efficiency (ratio of the number of requested memory

load and store transactions to the actual number of load and
store transactions performed - the lack of memory coalescing
can cause more memory transactions than requested to be
triggered). Table I shows the profiling data gathered for
lbTHRES = 32. As can be seen, all parallelization templates but
dpar-naïve report an increased warp efficiency compared to
the baseline code. This indicates a better utilization of the
available GPU cores. In addition, by processing nodes with
low outdegrees (< lbTHRES) and nodes with high outdegrees
separately, these code templates improve the memory load
and store efficiency. Finally, thanks to its use of shared
memory, dbuf-shared improves the memory coalescing over
dbuf-global, leading to better memory efficiency. To
conclude, our proposed parallelization templates improve
both GPU core utilization and memory access patterns.

Results on BC, PageRank and SpMV: Figure 6 shows
the performance of BC, PageRank and SpMV using various
lbTHRES settings. Again, we report the speedup achieved by
our code variants over a thread-mapped implementation
without load balancing. We make the following observations.

First, similarly to SSSP, the speedup decreases as lbTHRES
increases. This behavior is not surprising: the load balancing
threshold determines the number of iterations of the outer
loop that are processed in a block-mapped fashion, thus
reducing the warp divergence during the thread-mapped
phase and the resulting core underutilization. In other words,
the lower the value of lbTHRES, the more load balancing will
take place through block-based mapping. Table II, which
shows how the warp execution efficiency of dbuf-shared
varies with lbTHRES, supports this observation. As can be seen,
the lower the value of lbTHRES, the higher the warp efficiency
(and, consequently, the GPU utilization). Note that the use of
this parallelization template always improves the warp
efficiency over the baseline code. We observed similar
trends with all other parallelization templates but dpar-naïve.

Second, dual-queue performs better than the other code
variants only on BC. Dual-queue suffers from the overhead
of the initial creation of the two queues. While this overhead
is limited for small datasets (e.g. Wiki-vote used by BC), its
negative effect on performance becomes more obvious on
large datasets (e.g. CiteSeer used by PageRank and SpMV).

Third, on these applications dbuf-shared performs worse
than dbuf-global for low values of lbTHRES and reports better
or comparable performance for lbTHRES ≥ 128. This trend can
be explained as follows. Recall that both parallelization
templates use a delayed buffer to identify the large iterations
of the outer loop that must be processed in the second, block-
mapped phase. Since dbuf-global stores this buffer in global
memory, the load gets redistributed across the thread-blocks
during the second phase of the code (that is, the content of

Figure 5. SSSP: Speedup of load balancing code variants over basic thread-
mapped implementation. Experiments performed on the CiteSeer dataset
and Nvidia K20 GPU. The numbers on the bars indicate the number of
nested kernel calls performed by dynamic parallelism-based solutions.

TABLE I. Profiling data collected on SSSP (lbTHRES=32)

Templates	
Metrics	

warp	
efficiency	

gld	
efficiency	

gst	
efficiency	

baseline	 35.6%	 15.8%	 3.2%	
dual-‐queue	 74.9%	 79.1%	 4.8%	
dbuf-‐shared	 75.7%	 94.3%	 50.4%	
dbuf-‐global	 72.3%	 89.1%	 8.5%	
dpar-‐naïve	 25.3%	 45.5%	 16.3%	
dpar-‐opt	 70.2%	 63.2%	 10.9%	

the delayed buffer is partitioned fairly across thread-blocks).
However, this load redistribution across thread-blocks does
not take place in the case of dbuf-shared, which stores the
buffer in shared memory and performs a single kernel call.
The probability of load imbalance across thread-blocks is
higher for low values of lbTHRES, since in this case more work
is added to the delayed buffer. However, when lbTHRES
increases, less work is added to the delayed buffer, thus
decreasing the probability of work imbalance across thread-
blocks in the second phase of the code. When the amount of
load balancing is low, dbuf-global suffers from the overhead
of launching the second kernel. We used profiling data to
support this observation. Specifically, we analyzed the warp
occupancy of these code variants (that is, the ratio of the
average active warps per active cycle to the maximum
number of warps supported on a multiprocessor). For small
values of lbTHRES, dbuf-global reports a higher warp
occupancy compared to dbuf-shared (for example, for
lbTHRES=32, the warp occupancy of dbuf-shared and dbuf-
global is 18.3% and 26.9%, respectively), indicating a better
hardware utilization.

Finally, we observe that dpar-opt performs similarly to
(or slightly worse than) dbuf-shared. The nested kernel
handling and launch overhead outshadows the benefit of
dynamically remapping the work spawned within nested
kernels to the GPU hardware.

To summarize, we make the following observations. First,
the load balancing threshold lbTHRES is the dominant factor
affecting the performance. Second, due to its queue
consruction overhead, on large datasets the dual-queue
template tend to by outperformed by the delayed-buffer-
based and the dpar-opt solutions. Third, dbuf-global avoids
the intra-block imbalance that penalizes dbuf-shared at the
price of an additional kernel invocation to redistribute the
workload among blocks. The dbuf-shared template performs
similarly to dpar-opt without requiring hardware support for
dynamic parallelism, and usually it achieves the best
performance. Finally, dynamic parallelism must be used
judiciously: the naïve use of this feature can lead to a high
number of small grid invocations and suffer from a

significant overhead, thus killing the performance.

C. Experiments on Recursive Algorithms
In section II.C we have discussed three GPU

parallelization templates for recursive applications: non-
recursive flat-parallelism, recursive-naïve and recursive-
hierarchical (Figure 3). In this section we evaluate these
parallelization templates on three applications that operate on
tree and graph data structures: Tree Height, Tree
Descendants and recursive BFS. In all the related charts we
report the speedup of the code variants based on these
parallelization templates over the better one between
recursive and iterative serial CPU code.

Results on Tree Descendants/Heights: We evaluate the
performance of Tree Descendants and Tree Heights on
synthetic datasets. Our tree generator produces trees with
different shapes based on three parameters: tree depth, node
outdegree and sparsity. The sparsity parameter operates as
follows. All non-leaf nodes have the same number of
children, which is given by the node outdegree parameter.
The probability ρ of the non-leaf nodes having children is
defined as ρ = (!

!
)!"#$!%&'. Therefore, if sparsity=0 all non-

leaf nodes have children, leading to a regular tree where all
leaf nodes have maximum depth; if sparsity=1 non-leaf
nodes only possess a probability of ½ to have children, and
so on. In general, larger values of the sparsity parameter lead
to the generation of more irregular trees.

For both algorithms, we perform two sets of experiments
over trees with different depths. First, we set the sparsity to 0
(regular trees) and vary the node outdegree from 32 to 512.
This leads to trees that are regular in shape and exhibit an
increasing level of parallelism at each node. Second, we set
the node outdegree to 512 and vary the sparsity parameter
from 0 to 4, thus allowing the generation of increasingly
irregular trees. The results show that the depth parameter has
no significant effect on performance because it does not
change the irregularity and sparsity of the trees.

Figures 7(a) and (b) show the results reported by the Tree
Descendants algorithm discussed in Section II.C (pseudo-
code in Figure 3) on regular and irregular trees, respectively.
Figure 7(c) shows the following profiling information for
each code variant: warp utilization, number of dynamic
kernel calls and number dbuf-global of atomic operations.

As can be seen in Figures 7(a) and (c), on regular trees
the recursive-naïve implementation leads to significant
performance degradation over the serial CPU code (and the

TABLE II. Warp execution efficiency (dbuf-shared)
Applications	

lbTHRES	
32	 64	 256	 1024	 baseline	

SSSP	 75.6%	 71.9%	 45.3%	 37.2%	 35.6%	
BC	 75.8%	 56.7%	 17.1%	 10.8%	 10.3%	

PageRank	 91.5%	 87.0%	 63.4%	 50.9%	 50.8%	
SpMV	 94.4%	 82.3%	 71.5%	 51.5%	 51.0%	

 (a) BC (b) PageRank (c) SpMV
Figure 6. Speedup of the load balancing code variants over a basic thread-mapped implementation using various lbTHRES. settings. For BC, the dataset is
the wiki-vote. PageRank and SpMV are run on the CiteSeer network dataset. The naïve dynamic parallelism-based implementation (not shown for
readability) is significantly slower than the other code variants.

other GPU code variants) across all datasets. This is due to
the large number of “small” nested kernel invocations as
well as the low warp utilization of this code variant. The flat-
parallelism template reports a decent speedup compared to
the serial code when enough parallel work is spawned;
however, due to the required atomic operations, its
performance saturates for node outdegrees > 64. Despite the
lower warp utilization, the recursive-hierarchical code
variant outperforms the flat-parallelism template. This is due
to the significant reduction in the number of atomic
operations compared to the flat code.

As can be seen in Figures 7(b) and (c), the sparsity
parameter does not significantly affect the performance and
warp utilization of the flat-parallelism code variant. On the
other hand, the performance of the recursive-hierarchical
code decreases as the sparsity increases. As can be seen in
Figure 7(c), in this case the more irregular structure of the
tree has a negative effect on the warp utilization, causing this
performance degradation.

Figure 8 shows the performance and profiling results
reported by the Tree Heights algorithm on the same
synthetically generated trees. We define the tree height in a
recursive fashion as follows. Each leaf node within the tree is

assigned height 1, and the height of a non-leaf node is
defined as 1 + the maximum height across its children.

The recursive-naïve code variant achieves again poor
performance across all datasets due to its low warp
utilization and large number of small nested kernel launches.
As can be seen in Figures 8(a) and (c), on regular trees the
performance of the recursive-hierarchical kernel increases
with the node outdegree. In fact, the node outdegree affects
the amount of parallel work per node, and, as a consequence,
the GPU utilization. This is confirmed by the warp utilization
data. In addition, the recursive-hierarchical code variant
achieves better performance than the flat-parallelism one for
large node outdegrees. This is due to its significantly reduced
number of atomic operations. As in Tree Descendants, the
atomic operations cause the saturation of the performance of
flat-parallelism beyond a node outdegree of 128.

As shown in Figures 8(b) and (c), when the sparsity
increases, the behavior of Tree Heights is very similar to that
of Tree Descendants. Specifically, as the tree becomes more
irregular, the warp divergence causes the warp utilization of
the hierarchical kernel to drop significantly; on the other
hand, when the tree gets sparser, the atomic operations
required by the flat-parallelism kernel are reduced and its

(a) Sparsity = 0

(b) Node outdegree = 512

Out-‐	
degree	

Flat-‐Kernel	 Rec-‐naïve	 Rec-‐hier	
Warp	 Atomic	 Warp	 KCalls	 Warp	 Atomic	 KCalls	

32	 94.2%	 0.1m	 32%	 1.0k	 67.1%	 0.001m	 33	
64	 95.6%	 0.8m	 40.9%	 4.1k	 68.6%	 0.004m	 63	
128	 96.2%	 6.3m	 59.8%	 16k	 70.3%	 0.017m	 129	
256	 96.3%	 50m	 67.8%	 66k	 76.1%	 0.065m	 257	
512	 96.3%	 403m	 74.6%	 263k	 86.2%	 0.263m	 513	

Sparsity	 	 	
0	 96.3%	 403m	 74.6%	 263k	 86.2%	 0.263m	 513	
1	 96.3%	 98m	 72.8%	 64k	 81.6%	 0.129m	 250	
2	 96.3%	 26m	 69.8%	 17k	 77.1%	 0.068m	 132	
3	 96.2%	 6m	 66.4%	 4.4k	 75%	 0.035m	 65	
4	 95.9%	 1.6m	 66.2%	 1.1k	 73.9%	 0.018m	 35	

 (c) Profiling data

Figure 8. Tree heights on synthetic trees with depth 4. Speedup of GPU
code variants over iterative serial CPU code when (a) sparsity = 0 and
(b) node outdegree = 512; (c) corresponding profiling information. The
y-axis of charts (a) and (b) is in log10 scale: the values on top of the bars
indicate the exact speedup numbers.

(a) Sparsity = 0

 (b) Node outdegree = 512

Out-‐	
degree	

Flat-‐Kernel	 Rec-‐naïve	 Rec-‐hier	
Warp	 Atomic	 Warp	 KCalls	 Warp	 Atomic	 KCalls	

32	 92.3%	 0.10	 m	 32.0%	 1.0k	 68.0%	 0.001m	 33	
64	 93.5%	 0.79	 m	 40.8%	 4.1k	 64.6%	 0.004m	 63	
128	 94.3%	 6.32	 m	 59.7%	 16k	 65.2%	 0.016m	 129	
256	 94.4%	 50.4	 m	 67.6%	 66k	 72.2%	 0.065m	 257	
512	 94.4%	 403	 	 m	 74.4%	 263k	 84.4%	 0.262m	 513	

Sparsity	 	 	
0	 94.4%	 403	 	 m	 74.4%	 263k	 84.4%	 0.262m	 513	
1	 94.4%	 98.6	 m	 73.0%	 64k	 79.1%	 0.129m	 250	
2	 94.4%	 26.0	 m	 70.4%	 17k	 71.9%	 0.068m	 132	
3	 94.3%	 6.70	 m	 67.5%	 4.4k	 69.7%	 0.035m	 65	
4	 94%	 1.68	 m	 66.0%	 1.1k	 69.1%	 0.018m	 35	

 (c) Profiling data

Figure 7. Tree descendants on synthetic trees with depth 4. Speedup of
GPU code variants over iterative serial CPU code when (a) sparsity = 0
and (b) node outdegree = 512; (c) corresponding profiling information.
The y-axis of charts (a) and (b) is in log10 scale: the values on top of the
bars indicate the exact speedup numbers.

speedup stays stable, making the flat kernel preferable to the
recursive hierarchical one.

Results on recursive BFS: We now want to evaluate our
parallelization templates on a graph algorithm and compare
the results with those obtained on the two tree traversal
applications described above. To this end, we apply our
parallelization templates to BFS. We perform experiments
on randomly generated graphs consisting of 50,000 nodes. In
this case, the node outdegree is uniformly distributed within
a variable range (x-axis of Figure 9). This leads to a number
of edges varying from 1.6 to about 27 million, while the
number of levels in the graphs varies from 4 to 5. Our flat
GPU implementation is a thread-mapped parallelization of
level-based BFS traversal [5]. Our recursive implementations
are unordered [11]: the traversal of a node causes the
recursive traversal of its neighbors as long as their level
decreases. This implementation is not work-efficient and,
due to stack serialization, causes serial CPU traversal to
happen in depth-first (rather than in breadth-first) fashion.
Nevertheless, on CPU the recursive implementation
outperforms the iterative one by a factor varying from 1.25x
to 3.3x depending on the graph size. On GPU, the flat code
variant outperforms the CPU recursive implementation by a
factor 11-14x, whereas both recursive implementations lead
to a considerable slowdown (in the order of 700-14,000x).
This behavior significantly deviates from what observed on
tree traversal algorithms and can be explained as follows.
First, in this case the flat parallel code variant does not
require atomic operations, while the recursive code variants
do. Second, the considered tree algorithms are work efficient:
they traverse each node exactly once. Since in a graph
multiple nodes can share neighbors, this property does not
hold for unordered BFS traversals.

In Figure 9, we compare the results obtained applying the
two recursive GPU parallelization templates. In each case,
we also test using multiple streams per thread-blocks, thus
allowing concurrent execution of nested kernel calls
originated from the same block. We observe performance
improvements only when one additional stream per thread-
block is created (more streams cause overhead without
leading to significant parallelization benefits). In Figure 9,
we use the suffix “stream” to refer to code variants using an
additional stream per block. We make the following
observations. When only the default stream is used, the
hierarchical is again preferable to the naïve implementation.
On the other hand, while multiple stream support helps the
naïve implementation, it is detrimental for the hierarchical
code variant. These results can be explained as follows. In
the naïve case, the parallel execution of small nested kernels
allows better GPU utilization and reduction in the number of
kernel calls (by anticipating the processing of nodes closer to
the root in a BFS fashion, the traversal becomes more work
efficient). The hierarchical implementation, however, allows
parallel execution of kernels even in the absence of
additional streams, since kernels spawned by different
thread-blocks can be executed concurrently. In this situation,
the stream handling overhead is not overshadowed by a
better GPU utilization, and the parallel execution of many
kernels can make the traversal less work-efficient, especially

in case of large node outdegrees.
Finally, we have tested the use of multiple streams on

tree traversal. This optimization increases the performance of
the naïve recursive parallelization template. However, the
performance improvement is in this case more moderate than
in graph traversal. Multiple streams allow parallel execution
of kernel launches and better GPU utilization. However, they
do not make the tree traversal more work efficient (every
node is processed only once independent of the number of
CUDA streams used). The use of multiple streams does not
have a significant effect on the hierarchical recursive
parallelization template, which has a good GPU utilization
even with a single stream and remains the preferred solution.

IV. RELATED WORK
As GPUs have become more general purpose, the interest

of the research community has moved toward effectively
deploying irregular applications on these many-core
platforms. In particular, there have been several efforts
focusing on the acceleration of graph processing algorithms
on Nvidia GPUs [3, 5, 12-24]. Harish and Narayanan [5]
proposed a basic implementation suited to regular, dense
graphs. On sparse graphs, better results have been reported in
subsequent efforts, which covered a variety of algorithms
(breadth-first search [12-18], single-source shortest path [16-
18, 20], minimum spanning tree [17, 19], Delaunay mesh
refinement [16-19], points-to analysis [16, 18, 19, 21],
strongly connected components [22] and survey propagation
[16-19]). Among these, Hong et al. [20] proposed a virtual
warp-centric programming model with more general
applicability; Burtscher et al. [16-19] and Che et al. [23]
proposed benchmark suites of graph algorithms and
identified computational patterns common to different graph
applications. In this work we target irregular applications
beyond graph algorithms. In addition, rather than fine tuning
specific applications, we aim to provide and evaluate
parallelization templates of general applicability.

A few research efforts have addressed the problem of
nested parallelism on SIMD architectures. Blelloch and
Sabot [25] have proposed flattening transformation
techniques aimed to vectorize programs with nested data
parallelism, so to allow their deployment onto hardware
designed to accommodate a single level of parallelism (e.g.,
SIMD processors). They validated their compilation

Figure 9. Recursive BFS computation: slowdown of the GPU code
variants over recursive serial CPU code. The experiments are performed
on randomly generated graphs consisting of 50,000 nodes. The node
outdegree is randomly generated within the indicated range.

techniques on their proposed NESL language [26]. More
recently, Bergstrom and Reppy [27] ported NESL to GPUs.
In particular, they relied on the NESL compiler for the
flattening transformation and explored the design of data
structures and primitives (e.g., element-wise instructions,
scans, reductions, permutations) that enable good
performance on GPU. Their proposed flattening techniques
can be used to deploy recursive applications on GPUs
without support for nested kernel invocations (in other
words, to produce flat parallelization templates).

Recent studies have analyzed the strengths and
limitations of Nvidia’s dynamic parallelism. Yang and Zhou
[1] have proposed compiler techniques to implement nested-
thread level parallelism on algorithms operating on small
datasets where dynamic parallelism would perform poorly.
Their solution, however, would be less effective on large
datasets, which we consider in this work. The effectiveness
of dynamic parallelism on larger datasets has been
demonstrated on different applications: clustering algorithms
[28], computation of the Mandelbrot set [29] and a particle
physics simulation [30]. A recent study [2] has proposed a
characterization of dynamic parallelism on unstructured
applications. In particular, the proposed characterization
focus on modeling the effect of control and memory access
patterns on the performance. Differently from this work, the
considered applications are mostly parallelized as in our
naïve recursive parallelization template.

V. CONCLUSION
In this paper we have studied two computational patterns

exhibiting nested parallelism: irregular nested loops and
parallel recursive computations. We have proposed several
parallelization templates to better distribute the work to the
GPU hardware resources, and we have evaluated the use of
nested parallelism on the considered computational patterns.
Our experiments show that, by carefully selecting the
parallelization template, applications with irregular nested
loops can achieve a 2-6x speedup over basic thread-mapped
GPU implementations. The use of nested parallelism on
recursive tree traversal can lead to significant speedup (up to
a 15-24x factor) over iterative serial CPU code, and can be
preferable to the parallelization of iterative versions of these
algorithms. However, the benefits of nested parallelism on
recursive applications operating on array and graph data
structures are still unclear, especially when recursive code
variants require synchronization through atomic operations.

VI. ACKNOWLEDGMENTS
This work has been supported by NSF awards CNS-1216756
and CCF-1452454 and by a gift from NEC Laboratories
America and equipment donations from Nvidia Corporation.

REFERENCES
[1] Y. Yang, and H. Zhou, “CUDA-NP: realizing nested thread-level

parallelism in GPGPU applications,” in Proc. of PPoPP 2014.

[2] J. Wang, and S. Yalamanchili, “Characterization and Analysis of
Dynamic Parallelism in Unstructured GPU Applications,” in Proc. of
IISWC 2014.

[3] D. Li, and M. Becchi, “Deploying Graph Algorithms on GPUs: an
Adaptive Solution,” in Proc. of IPDPS 2013.

[4] M. Goldfarb, Y. Jo, and M. Kulkarni, “General transformations for
GPU execution of tree traversals,” in Proc. of SC 2013.

[5] P. Harish, and P. J. Narayanan, “Accelerating large graph algorithms
on the GPU using CUDA,” in Proc. of HiPC 2007.

[6] A. E. Sriyuce, et al. , "Betweenness Centrality on GPUs and
Heterogeneous Architectures." in Proc. of GPGPU-6 2013.

[7] N. T. Duong, et al., "Parallel PageRank computation using GPUs."
in Proc of 3rd Symp. on Information and Communication
Technology, 2012.

[8] J. L. Greathouse, and M. Daga, "Efficient sparse matrix-vector
multiplication on GPUs using the CSR storage format." in Proc of
SC 2014.

[9] "DIMACS Implementation Challenges,"
http://dimacs.rutgers.edu/Challenges/.

[10] "Stanford Large Network Dataset Collection,"
http://snap.stanford.edu/data.

[11] M. A. Hassaan, M. Burtscher, and K. Pingali, “Ordered vs.
unordered: a comparison of parallelism and work-efficiency in
irregular algorithms,” in Proc. of PPoPP 2011.

[12] L. Luo, M. Wong, and W.-m. Hwu, “An effective GPU
implementation of breadth-first search,” in Proc. of DAC 2010.

[13] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph
traversal,” in Proc. of PPoPP 2012.

[14] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient Parallel Graph
Exploration on Multi-Core CPU and GPU,” in Proc. of PACT 2011.

[15] A. Gharaibeh, et al., “On Graphs, GPUs, and Blind Dating: A
Workload to Processor Matchmaking Quest,” in Proc. of IPDPS
2013.

[16] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of
irregular programs on GPUs,” in Proc. of IISWC 2012.

[17] R. Nasre, M. Burtscher, and K. Pingali, “Data-driven versus
Topology-driven Irregular Computations on GPUs,” in Proc. of
IPDPS 2013.

[18] R. Nasre, M. Burtscher, and K. Pingali, “Atomic-free irregular
computations on GPUs,” in Proc. of GPGPU 2013.

[19] R. Nasre, M. Burtscher, and K. Pingali, “Morph algorithms on
GPUs,” in Proc. of PPoPP 2013.

[20] S. Hong, et al., “Accelerating CUDA graph algorithms at maximum
warp,” in Proc. of PPoPP 2011.

[21] M. Mendez-Lojo, M. Burtscher, and K. Pingali, “A GPU
implementation of inclusion-based points-to analysis,” in Proc. of
PPoPP 2012.

[22] J. Barnat, et al., “Computing Strongly Connected Components in
Parallel on CUDA,” in Proc. of IPDPS 2011.

[23] C. Shuai, et al., “Pannotia: Understanding irregular GPGPU graph
applications,” in Proc of IISWC 2013.

[24] F. Khorasani, et al., “CuSha: vertex-centric graph processing on
GPUs,” in Proc. of HPDC 2014.

[25] G. E. Blelloch, and G. W. Sabot, “Compiling collection-oriented
languages onto massively parallel computers,” J. Parallel Distrib.
Comput., vol. 8, no. 2, pp. 119-134, 1990.

[26] G. E. Blelloch, NESL: A Nested Data-Parallel Language, Carnegie
Mellon University, 1992.

[27] L. Bergstrom, and J. Reppy, “Nested data-parallelism on the gpu,” in
Proc. of ICFP 2012.

[28] J. DiMarco, and M. Taufer, “Performance Impact of Dynamic
Parallelism on Different Clustering Algorithms and the New GPU
Architecture,” in Proc. of SPIE Defense, Security, and Sensing
Symp. 2013.

[29] A. Adinetz. "Adaptive Parallel Computation with CUDA Dynamic
Parallelism," http://devblogs.nvidia.com/parallelforall/introduction-
cuda-dynamic-parallelism/.

[30] A. Adinetz. "A CUDA Dynamic Parallelism Case Study: PANDA,"
http://devblogs.nvidia.com/parallelforall/a-cuda-dynamic-
parallelism-case-study-panda/.

