
Multiple Pairwise Sequences Alignments with
Needleman-Wunsch Algorithm on GPU

Da Li
Dept. of Electrical and Computer Engineering

University of Missouri
Columbia, Missouri, USA
dlx7f@mail.missouri.edu

Michela Becchi
Dept. of Electrical and Computer Engineering

University of Missouri
Columbia, Missouri, USA

becchim@missouri.edu

Abstract—Pairwise sequence alignment is the method to find
the best matching piece for two sequences. It can be either local
which return the most similar subsequence or global which
return the alignment of whole sequence. Nowadays, the number
of genetic sequences increases exponentially so that it becomes a
challenge to analyze and understand those data. The cutting-edge
parallel architectures provide lots of opportunities to ace the
problem. The Graphical Processing Unit (GPU) is becoming an
appealing choice for accelerating these processes. In this paper,
we will explore multiple pairwise sequence alignment with
Needleman-Wunsch algorithm, which is the fundamental method
for global alignment. Our proposed method levers the parallelism
between different pairs and void the unnecessary data copy to
achieve 2X speedup for data transfer and 2.9X acceleration ratio
for kernel execution.

Index Terms—sequence alignment, GPU.

I. INTRODUCTION
Sequence alignment is one of the fundamental problems in

bioinformatics. Needleman-Wunsch algorithm [1] and Smith-
Waterman algorithm [2] are two widely used approaches for
pairwise alignment. The former is for global alignment which
measures the similarity between two sequences while the latter
is aimed at find the longest similar piece within two sequences.
These two algorithms are very alike. Basically, a 2-D matrix
will be filled with different scores according to some rules and
the whole process goes from up-left to the bottom-right. Taking
Needleman-Wunsch algorithm as an example, each element in
the score matrix will be filled according to equation (1). In the
equation, the M(i,j) means the value in ith row and jth column of
score matrix. G is the penalty score for a gap and S(xi,yj) is the
substitution score of current position. The 1st row and 1st
column of the score matrix will be initialized and the value in
remaining position is determined by the values in its left, up
and diagonal elements.

(1, 1) (,)
(,) max (1,)

(, 1)

i jM i j S x y
M i j M i j G

M i j G

− − +⎧
⎪

= − +⎨
⎪ − +⎩

 (1)

Researchers have proposed some implementations of
Needleman-Wunsch algorithm on different parallel architecture
[3-5]. The most famous one on GPU is from Rodinia [5] which
is a heterogeneous bench mark.

In this paper, we propose a practical implementation of
Needleman-Wunsch on GPU for multiple pairwise alignments.

Compared with existing solution, the contributions of our paper
lie on the following aspects:

• Support multiple pairwise sequence alignments at the
same time which is the common case in practice

• Perform initialization on GPU
• Optimize memory usage to avoid unnecessary data

transfer
• Support alignment between the sequences in different

lengths

II. MOTIVATION
The CUDA implementation of Needleman-Wunsch in

Rodinia benchmark is the first parallel implementation on GPU.
The optimized final version can achieve an 8.0x speedup over
single thread CPU code [3]. The score matrix is processed in a
diagonal strip manner from top-left to bottom-right. This
implementation utilizes a hierarchical parallelism (grid level
and thread-block level) to reduce global memory access and
kernel launch overhead.

After carefully analyze the CUDA implementation in
Rodinia, we find there are several drawbacks:

A. Practical Issues
Due to increasing amount of sequences in genetic database,

usually the operations are querying and comparing multiple
pairwise alignments concurrently. There is rare chance that
only one pair of sequences will be considered. The fact of
multiple pairwise alignments can introduce another dimension
of parallelism since there are no dependences between different
pairs. Also, the sequences are usually in different length while
the CUDA implementation in Rodinia only supports sequences
in the same length so that padding is needed.

B. Communication overhead
in Rodinia’s implementation, three data transfers are

existed. Before kernel launch, the score matrix and reference
matrix will be copied from CPU to GPU. And after processed
by GPU, the score matrix should be copied back from GPU to
CPU. If the sequences in one pairwise alignment are in length
N and M separately, the matrix will be in size of N*M.

actually, the first two data transfers can be avoided. For
score matrix, the 1st row and 1st column should be initialized. If
the initialization can be performed on GPU, there is no need to
copy score matrix. Also, for the reference matrix, we don’t
need one in the same size as score matrix. It can be encoded

This work has been supported by National Science Foundation grant
CNS-1216756, and by equipment donation from Nvidia Corporation.

into a small table which is square of character set size and by
indexing we can get the value when producing the score matrix.

C. Kernel Launch overhead and Configuration
The CUDA programming model doesn’t support global

synchronization between blocks. The implementation in
Rodinia has two levels of parallelism and in the grid level, the
global synchronization is needed. This leads to multiple kernel
launches from the host side. Also, to achieve maximum
occupancy, only 16 threads are configured for each block [3]
which is against the fact that in GPU 32 threads are grouped
into one warp and perform an SIMT behavior. Half of the
threads in one warp are wasted.

III. DESIGN AND IMPLEMENTATION
Our proposed method is aimed at multiple pairwise

alignments at the same time. So each pair of sequences will be
assigned to one block and within the block, multiple threads
will process the score matrix in diagonal strip manner. Figure 1
shows how each of score matrices is processed in different
block. Four pairs are processed in four different blocks. They
are independent to each other.

Bl ock 0 Bl ock 1

Bl ock 2 Bl ock 3

Fig. 1. Four pairs are processed in different GPU blocks concurrently

To utilize the shared memory, two diagonal lines of data

will be loaded from global memory to shared memory.
According to equation (1), using these two diagonal lines, the
following diagonal line of data can be calculated and then
stored to shared memory and global memory. After that, the
first diagonal line of data can be discarded and the shared
memory can be used for the next diagonal line of data. So to
calculate one score matrix, only three lines of shared memory
are needed. Two of them will hold the previous results and the
remaining one will store the new results.

IV. EXPERIMENTAL RESULTS
We implement our method with CUDA 4.0 runtime API

and test it on GeForce GTX 480. The GPU consists of 480
CUDA cores (15 Multiprocessors and 32 CUDA Cores/MP).
The GPU clock speed is 1.40GHz and the memory clock rate is

1.848 GHz with 384-bit bandwidth. The length of sequences is
2000 which is the common case. Figure 2 and 3 show the
comparison of data transfer time and kernel execution time
between Rodinia implementation and our approach. The data
transfer time is roughly half of the original one in Rodinia and
the kernel execution achieves at most 2.9X speed up.

0.02
0.14

0.27

0.54

1.08

0.01 0.07
0.13

0.26

0.54

0

0.2

0.4

0.6

0.8

1

1.2

1 8 16 32 64

D
at

a
T

ra
ns

fe
r T

im
e(

s)

Number of pairs in concurrent processing

Rodinia
Our approach

Fig 2. Comparison of data transfer time

0.01
0.05

0.10

0.19

0.38

0.02 0.02
0.05

0.07

0.13

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

1 8 16 32 64

K
er

ne
l E

xe
cu

tio
n

T
im

e(
s)

Number of pairs in concurrent processing

Rodinia
Our approach

Fig 3. Comparison of kernel execution time

V. CONCLUSION
We implement a practical GPU version of Needleman-

Wunsch that supports multiple pairwise sequence alignment at
the same time. The results show that both the data transfer time
and the kernel execution time can be reduced to roughly 1/2 of
the previous implementation.

REFERENCES
[1] Saul B. Needleman, Christian D. Wunsch, “A general method applicable

to the search for similarities in the amino acid sequence of two proteins”,
Journal of Molecular Biology 48 (3): 443-53, 1970.

[2] Temple F. Smith, Michael S. Waterman, “Identification of Common
molecular Subsequences”, Journal of Molecular Biology 147: 195-197,
1981.

[3] Tahir Naveed, Imitaz Saeed Siddiqui, Shaftab Ahmed, “Parallel
Needleman-Wunsch Algorithm for Grid”, Proceedings of the PAK-US
International Symposium on High Capacity Optical Networks and
Enabling Technologies(HONET 2005), Islamabad, Pakistan, 2005.

[4] Shuai Che, Jie Li, Jeremy W. Sheaffer, Kevin Skadron, John Lach,
“Accelerating Compute-Intensive Applications with GPUs and FPGAs”,
SASP, 2008.

[5] Shuai Che, Michael Boyer et al, “Rodinia: A Benchmark Suite for
Heterogeneous computing”, In Proceedings of the IEEE International
Symposium on Workload Charactertization (IISWC), pp. 44-54. 2009.

